Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3764 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_2M_6$ + $ M_7\phi_1\tilde{q}_2^2$ | 0.6578 | 0.878 | 0.7492 | [X:[], M:[0.9528, 1.1416, 0.9528, 0.7125, 0.8069, 0.8584, 0.6695], q:[0.7382, 0.309], qb:[0.4549, 0.4034], phi:[0.5236]] | [X:[], M:[[-4], [12], [-4], [18], [26], [-12], [-28]], q:[[-1], [5]], qb:[[-25], [13]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_4$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_5$, $ M_6$, $ M_1$, $ M_3$, $ M_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ M_7^2$, $ M_4M_7$, $ M_7q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_7q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_5M_7$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_4M_5$, $ M_5q_2\tilde{q}_2$, $ M_6M_7$, $ q_2^2\tilde{q}_1^2$, $ M_4M_6$, $ \phi_1q_1q_2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_5^2$, $ M_1M_7$, $ M_3M_7$, $ M_6q_2\tilde{q}_1$, $ M_1M_4$, $ M_3M_4$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_1M_5$, $ M_3M_5$, $ M_1M_6$, $ M_3M_6$, $ M_2M_7$, $ M_7\phi_1q_2^2$, $ M_2M_4$, $ M_4\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_7\phi_1q_2\tilde{q}_2$, $ M_2M_5$, $ M_5\phi_1q_2^2$, $ M_4\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ | $M_6\phi_1q_2^2$ | -1 | t^2.01 + 2*t^2.14 + t^2.29 + t^2.42 + t^2.58 + 2*t^2.86 + 2*t^3.42 + t^3.71 + t^4.02 + 3*t^4.15 + 3*t^4.27 + 2*t^4.3 + 3*t^4.43 + 2*t^4.56 + 2*t^4.58 + 3*t^4.71 + t^4.84 + 3*t^4.87 + 5*t^5. + 3*t^5.15 + 2*t^5.28 + 4*t^5.43 + 3*t^5.56 + 4*t^5.72 + 3*t^5.85 - t^6. + t^6.03 + t^6.13 + 2*t^6.15 + 6*t^6.28 + 2*t^6.31 + 4*t^6.41 + 4*t^6.44 + 6*t^6.57 + 3*t^6.59 + 3*t^6.7 + 5*t^6.72 + 6*t^6.85 + 5*t^6.88 + 2*t^6.98 + 7*t^7. + 9*t^7.13 + 5*t^7.16 + t^7.26 + 5*t^7.29 + 4*t^7.42 + 6*t^7.44 + 7*t^7.57 + 6*t^7.7 + 6*t^7.73 + 8*t^7.85 + 4*t^7.98 + 2*t^8.01 + t^8.03 + 2*t^8.16 + 3*t^8.27 + 4*t^8.29 + 2*t^8.32 + 5*t^8.42 + 4*t^8.45 + 6*t^8.55 + 5*t^8.58 + 4*t^8.6 + 8*t^8.7 + 5*t^8.73 + 4*t^8.83 + 2*t^8.86 + 6*t^8.88 + 9*t^8.99 - t^4.57/y - t^6.58/y - t^6.71/y - t^6.99/y + (2*t^7.15)/y + t^7.27/y + t^7.3/y + (2*t^7.43)/y + (2*t^7.56)/y + t^7.58/y + (4*t^7.71)/y + (3*t^7.87)/y + (5*t^8.)/y + (3*t^8.15)/y + (2*t^8.28)/y + (5*t^8.43)/y + (5*t^8.56)/y - t^8.59/y + (3*t^8.72)/y + (3*t^8.85)/y - t^4.57*y - t^6.58*y - t^6.71*y - t^6.99*y + 2*t^7.15*y + t^7.27*y + t^7.3*y + 2*t^7.43*y + 2*t^7.56*y + t^7.58*y + 4*t^7.71*y + 3*t^7.87*y + 5*t^8.*y + 3*t^8.15*y + 2*t^8.28*y + 5*t^8.43*y + 5*t^8.56*y - t^8.59*y + 3*t^8.72*y + 3*t^8.85*y | t^2.01/g1^28 + 2*g1^18*t^2.14 + t^2.29/g1^20 + g1^26*t^2.42 + t^2.58/g1^12 + (2*t^2.86)/g1^4 + 2*g1^12*t^3.42 + g1^20*t^3.71 + t^4.02/g1^56 + (3*t^4.15)/g1^10 + 3*g1^36*t^4.27 + (2*t^4.3)/g1^48 + (3*t^4.43)/g1^2 + 2*g1^44*t^4.56 + (2*t^4.58)/g1^40 + 3*g1^6*t^4.71 + g1^52*t^4.84 + (3*t^4.87)/g1^32 + 5*g1^14*t^5. + (3*t^5.15)/g1^24 + 2*g1^22*t^5.28 + (4*t^5.43)/g1^16 + 3*g1^30*t^5.56 + (4*t^5.72)/g1^8 + 3*g1^38*t^5.85 - t^6. + t^6.03/g1^84 + g1^46*t^6.13 + (2*t^6.15)/g1^38 + 6*g1^8*t^6.28 + (2*t^6.31)/g1^76 + 4*g1^54*t^6.41 + (4*t^6.44)/g1^30 + 6*g1^16*t^6.57 + (3*t^6.59)/g1^68 + 3*g1^62*t^6.7 + (5*t^6.72)/g1^22 + 6*g1^24*t^6.85 + (5*t^6.88)/g1^60 + 2*g1^70*t^6.98 + (7*t^7.)/g1^14 + 9*g1^32*t^7.13 + (5*t^7.16)/g1^52 + g1^78*t^7.26 + (5*t^7.29)/g1^6 + 4*g1^40*t^7.42 + (6*t^7.44)/g1^44 + 7*g1^2*t^7.57 + 6*g1^48*t^7.7 + (6*t^7.73)/g1^36 + 8*g1^10*t^7.85 + 4*g1^56*t^7.98 + (2*t^8.01)/g1^28 + t^8.03/g1^112 + (2*t^8.16)/g1^66 + 3*g1^64*t^8.27 + (4*t^8.29)/g1^20 + (2*t^8.32)/g1^104 + 5*g1^26*t^8.42 + (4*t^8.45)/g1^58 + 6*g1^72*t^8.55 + (5*t^8.58)/g1^12 + (4*t^8.6)/g1^96 + 8*g1^34*t^8.7 + (5*t^8.73)/g1^50 + 4*g1^80*t^8.83 + (2*t^8.86)/g1^4 + (6*t^8.88)/g1^88 + 9*g1^42*t^8.99 - (g1^2*t^4.57)/y - t^6.58/(g1^26*y) - (g1^20*t^6.71)/y - (g1^28*t^6.99)/y + (2*t^7.15)/(g1^10*y) + (g1^36*t^7.27)/y + t^7.3/(g1^48*y) + (2*t^7.43)/(g1^2*y) + (2*g1^44*t^7.56)/y + t^7.58/(g1^40*y) + (4*g1^6*t^7.71)/y + (3*t^7.87)/(g1^32*y) + (5*g1^14*t^8.)/y + (3*t^8.15)/(g1^24*y) + (2*g1^22*t^8.28)/y + (5*t^8.43)/(g1^16*y) + (5*g1^30*t^8.56)/y - t^8.59/(g1^54*y) + (3*t^8.72)/(g1^8*y) + (3*g1^38*t^8.85)/y - g1^2*t^4.57*y - (t^6.58*y)/g1^26 - g1^20*t^6.71*y - g1^28*t^6.99*y + (2*t^7.15*y)/g1^10 + g1^36*t^7.27*y + (t^7.3*y)/g1^48 + (2*t^7.43*y)/g1^2 + 2*g1^44*t^7.56*y + (t^7.58*y)/g1^40 + 4*g1^6*t^7.71*y + (3*t^7.87*y)/g1^32 + 5*g1^14*t^8.*y + (3*t^8.15*y)/g1^24 + 2*g1^22*t^8.28*y + (5*t^8.43*y)/g1^16 + 5*g1^30*t^8.56*y - (t^8.59*y)/g1^54 + (3*t^8.72*y)/g1^8 + 3*g1^38*t^8.85*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
5373 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_2M_6$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_6M_8$ | 0.6455 | 0.8571 | 0.7531 | [X:[], M:[0.9544, 1.1369, 0.9544, 0.7054, 0.7966, 0.8631, 0.6806, 1.1369], q:[0.7386, 0.307], qb:[0.4648, 0.3983], phi:[0.5228]] | t^2.04 + 2*t^2.12 + t^2.32 + t^2.39 + 2*t^2.86 + 3*t^3.41 + t^3.68 + t^4.08 + 3*t^4.16 + 3*t^4.23 + 2*t^4.36 + 3*t^4.43 + 2*t^4.51 + t^4.63 + t^4.71 + t^4.78 + 2*t^4.9 + 4*t^4.98 + 2*t^5.18 + 2*t^5.25 + 3*t^5.45 + 5*t^5.53 + 5*t^5.73 + 4*t^5.8 - 3*t^6. - t^4.57/y - t^4.57*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3328 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_2M_6$ | 0.6369 | 0.8365 | 0.7614 | [X:[], M:[0.9529, 1.1414, 0.9529, 0.712, 0.8063, 0.8586], q:[0.7382, 0.3089], qb:[0.4555, 0.4031], phi:[0.5236]] | 2*t^2.14 + t^2.29 + t^2.42 + t^2.58 + 2*t^2.86 + 2*t^3.42 + t^3.71 + t^3.99 + t^4.15 + 3*t^4.27 + t^4.3 + 2*t^4.43 + 2*t^4.56 + t^4.59 + 3*t^4.71 + t^4.84 + t^4.87 + 5*t^4.99 + 3*t^5.15 + 2*t^5.28 + 2*t^5.43 + 3*t^5.56 + 3*t^5.72 + 3*t^5.84 - t^6. - t^4.57/y - t^4.57*y | detail |