Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3763 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_2M_6$ + $ M_6M_7$ 0.6247 0.8166 0.765 [X:[], M:[0.9548, 1.1355, 0.9548, 0.7033, 0.7937, 0.8645, 1.1355], q:[0.7387, 0.3065], qb:[0.4676, 0.3968], phi:[0.5226]] [X:[], M:[[-4], [12], [-4], [18], [26], [-12], [12]], q:[[-1], [5]], qb:[[-25], [13]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_5$, $ M_1$, $ M_3$, $ M_2$, $ M_7$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_4M_5$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ M_5q_2\tilde{q}_1$, $ M_5^2$, $ M_1M_4$, $ M_3M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_1M_5$, $ M_3M_5$, $ M_2M_4$, $ M_4M_7$, $ M_4\phi_1q_2^2$, $ M_7q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_7q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_2M_5$, $ M_5M_7$, $ M_5\phi_1q_2^2$, $ M_4\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ . -3 2*t^2.11 + t^2.32 + t^2.38 + 2*t^2.86 + 3*t^3.41 + t^3.68 + t^3.95 + t^4.16 + 3*t^4.22 + t^4.37 + 2*t^4.43 + 2*t^4.49 + t^4.64 + t^4.7 + t^4.76 + 4*t^4.97 + 2*t^5.19 + 2*t^5.25 + 5*t^5.52 + 4*t^5.73 + 4*t^5.79 - 3*t^6. + 3*t^6.06 - t^6.21 + 5*t^6.27 + 5*t^6.33 + t^6.48 + 4*t^6.54 + 3*t^6.6 + t^6.7 + t^6.75 + 7*t^6.81 + 2*t^6.87 + t^6.97 + 8*t^7.08 + t^7.14 + t^7.24 + 6*t^7.36 + t^7.51 + 10*t^7.63 + 5*t^7.84 + 7*t^7.9 + 2*t^8.05 - 2*t^8.11 + 7*t^8.17 - 4*t^8.32 + 4*t^8.38 + 8*t^8.44 + 3*t^8.59 + 7*t^8.65 + 5*t^8.71 + t^8.75 + t^8.81 - 7*t^8.86 + 12*t^8.92 + 3*t^8.98 - t^4.57/y - t^6.68/y - t^6.95/y + t^7.16/y + t^7.22/y + t^7.43/y + (2*t^7.49)/y + (2*t^7.7)/y + (3*t^7.97)/y + (3*t^8.19)/y + (2*t^8.25)/y + t^8.46/y + (6*t^8.52)/y + (4*t^8.73)/y + (4*t^8.79)/y - t^4.57*y - t^6.68*y - t^6.95*y + t^7.16*y + t^7.22*y + t^7.43*y + 2*t^7.49*y + 2*t^7.7*y + 3*t^7.97*y + 3*t^8.19*y + 2*t^8.25*y + t^8.46*y + 6*t^8.52*y + 4*t^8.73*y + 4*t^8.79*y 2*g1^18*t^2.11 + t^2.32/g1^20 + g1^26*t^2.38 + (2*t^2.86)/g1^4 + 3*g1^12*t^3.41 + g1^20*t^3.68 + g1^28*t^3.95 + t^4.16/g1^10 + 3*g1^36*t^4.22 + t^4.37/g1^48 + (2*t^4.43)/g1^2 + 2*g1^44*t^4.49 + t^4.64/g1^40 + g1^6*t^4.7 + g1^52*t^4.76 + 4*g1^14*t^4.97 + (2*t^5.19)/g1^24 + 2*g1^22*t^5.25 + 5*g1^30*t^5.52 + (4*t^5.73)/g1^8 + 4*g1^38*t^5.79 - 3*t^6. + 3*g1^46*t^6.06 - t^6.21/g1^38 + 5*g1^8*t^6.27 + 5*g1^54*t^6.33 + t^6.48/g1^30 + 4*g1^16*t^6.54 + 3*g1^62*t^6.6 + t^6.7/g1^68 + t^6.75/g1^22 + 7*g1^24*t^6.81 + 2*g1^70*t^6.87 + t^6.97/g1^60 + 8*g1^32*t^7.08 + g1^78*t^7.14 + t^7.24/g1^52 + 6*g1^40*t^7.36 + t^7.51/g1^44 + 10*g1^48*t^7.63 + 5*g1^10*t^7.84 + 7*g1^56*t^7.9 + (2*t^8.05)/g1^28 - 2*g1^18*t^8.11 + 7*g1^64*t^8.17 - (4*t^8.32)/g1^20 + 4*g1^26*t^8.38 + 8*g1^72*t^8.44 + (3*t^8.59)/g1^12 + 7*g1^34*t^8.65 + 5*g1^80*t^8.71 + t^8.75/g1^96 + t^8.81/g1^50 - (7*t^8.86)/g1^4 + 12*g1^42*t^8.92 + 3*g1^88*t^8.98 - (g1^2*t^4.57)/y - (g1^20*t^6.68)/y - (g1^28*t^6.95)/y + t^7.16/(g1^10*y) + (g1^36*t^7.22)/y + t^7.43/(g1^2*y) + (2*g1^44*t^7.49)/y + (2*g1^6*t^7.7)/y + (3*g1^14*t^7.97)/y + (3*t^8.19)/(g1^24*y) + (2*g1^22*t^8.25)/y + t^8.46/(g1^16*y) + (6*g1^30*t^8.52)/y + (4*t^8.73)/(g1^8*y) + (4*g1^38*t^8.79)/y - g1^2*t^4.57*y - g1^20*t^6.68*y - g1^28*t^6.95*y + (t^7.16*y)/g1^10 + g1^36*t^7.22*y + (t^7.43*y)/g1^2 + 2*g1^44*t^7.49*y + 2*g1^6*t^7.7*y + 3*g1^14*t^7.97*y + (3*t^8.19*y)/g1^24 + 2*g1^22*t^8.25*y + (t^8.46*y)/g1^16 + 6*g1^30*t^8.52*y + (4*t^8.73*y)/g1^8 + 4*g1^38*t^8.79*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3328 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_2M_6$ 0.6369 0.8365 0.7614 [X:[], M:[0.9529, 1.1414, 0.9529, 0.712, 0.8063, 0.8586], q:[0.7382, 0.3089], qb:[0.4555, 0.4031], phi:[0.5236]] 2*t^2.14 + t^2.29 + t^2.42 + t^2.58 + 2*t^2.86 + 2*t^3.42 + t^3.71 + t^3.99 + t^4.15 + 3*t^4.27 + t^4.3 + 2*t^4.43 + 2*t^4.56 + t^4.59 + 3*t^4.71 + t^4.84 + t^4.87 + 5*t^4.99 + 3*t^5.15 + 2*t^5.28 + 2*t^5.43 + 3*t^5.56 + 3*t^5.72 + 3*t^5.84 - t^6. - t^4.57/y - t^4.57*y detail