Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3652 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1q_2\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_1M_4$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_1$ | 0.6951 | 0.9138 | 0.7606 | [X:[], M:[1.125, 0.75, 0.75, 0.875, 0.75, 0.75], q:[0.75, 0.375], qb:[0.5, 0.375], phi:[0.5]] | [X:[], M:[[1], [-2], [0], [-1], [2], [0]], q:[[0], [-1]], qb:[[0], [1]], phi:[[0]]] | 1 | {a: 2847/4096, c: 3743/4096, M1: 9/8, M2: 3/4, M3: 3/4, M4: 7/8, M5: 3/4, M6: 3/4, q1: 3/4, q2: 3/8, qb1: 1/2, qb2: 3/8, phi1: 1/2} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_3$, $ M_5$, $ M_6$, $ q_2\tilde{q}_2$, $ M_2$, $ M_5$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1^2$, $ q_1q_2$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_2M_3$, $ M_3^2$, $ M_2M_5$, $ M_3M_5$, $ M_5^2$, $ M_2M_6$, $ M_3M_6$, $ M_5M_6$, $ M_6^2$, $ \phi_1\tilde{q}_1^2$, $ M_2q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_2^2$, $ M_2M_3$, $ M_2M_6$, $ M_2q_2\tilde{q}_2$, $ M_3M_5$, $ M_5M_6$, $ M_5q_2\tilde{q}_2$, $ M_5^2$, $ M_2M_4$, $ M_3M_4$, $ M_4M_6$, $ M_4q_2\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_4M_5$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_4^2$, $ M_2\phi_1^2$, $ M_5\phi_1^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_2q_1q_2$, $ M_4\phi_1^2$, $ M_3q_1q_2$, $ M_6q_1q_2$, $ M_2q_1\tilde{q}_2$, $ q_1q_2^2\tilde{q}_2$, $ M_5q_1q_2$, $ M_3q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_5q_1\tilde{q}_2$ | $M_4q_1q_2$, $ M_4q_1\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ | -1 | 5*t^2.25 + 2*t^2.62 + t^3. + 2*t^3.38 + 2*t^4.12 + 16*t^4.5 + 10*t^4.88 + 8*t^5.25 + 10*t^5.62 - t^6. + 6*t^6.38 + 41*t^6.75 + 26*t^7.12 + 25*t^7.5 + 28*t^7.88 - 7*t^8.25 + 6*t^8.62 - t^4.5/y - (4*t^6.75)/y + (10*t^7.5)/y + (10*t^7.88)/y + (10*t^8.25)/y + (12*t^8.62)/y - t^4.5*y - 4*t^6.75*y + 10*t^7.5*y + 10*t^7.88*y + 10*t^8.25*y + 12*t^8.62*y | 3*t^2.25 + t^2.25/g1^2 + g1^2*t^2.25 + t^2.62/g1 + g1*t^2.62 + t^3. + t^3.38/g1 + g1*t^3.38 + t^4.12/g1 + g1*t^4.12 + 8*t^4.5 + t^4.5/g1^4 + (3*t^4.5)/g1^2 + 3*g1^2*t^4.5 + g1^4*t^4.5 + t^4.88/g1^3 + (4*t^4.88)/g1 + 4*g1*t^4.88 + g1^3*t^4.88 + 4*t^5.25 + (2*t^5.25)/g1^2 + 2*g1^2*t^5.25 + t^5.62/g1^3 + (4*t^5.62)/g1 + 4*g1*t^5.62 + g1^3*t^5.62 - t^6. + t^6.38/g1^3 + (2*t^6.38)/g1 + 2*g1*t^6.38 + g1^3*t^6.38 + 15*t^6.75 + t^6.75/g1^6 + (3*t^6.75)/g1^4 + (9*t^6.75)/g1^2 + 9*g1^2*t^6.75 + 3*g1^4*t^6.75 + g1^6*t^6.75 + t^7.12/g1^5 + (4*t^7.12)/g1^3 + (8*t^7.12)/g1 + 8*g1*t^7.12 + 4*g1^3*t^7.12 + g1^5*t^7.12 + 9*t^7.5 + (2*t^7.5)/g1^4 + (6*t^7.5)/g1^2 + 6*g1^2*t^7.5 + 2*g1^4*t^7.5 + t^7.88/g1^5 + (5*t^7.88)/g1^3 + (8*t^7.88)/g1 + 8*g1*t^7.88 + 5*g1^3*t^7.88 + g1^5*t^7.88 - 5*t^8.25 - t^8.25/g1^2 - g1^2*t^8.25 + t^8.62/g1^5 + (2*t^8.62)/g1^3 + 2*g1^3*t^8.62 + g1^5*t^8.62 - t^4.5/y - (2*t^6.75)/y - t^6.75/(g1^2*y) - (g1^2*t^6.75)/y + (4*t^7.5)/y + (3*t^7.5)/(g1^2*y) + (3*g1^2*t^7.5)/y + t^7.88/(g1^3*y) + (4*t^7.88)/(g1*y) + (4*g1*t^7.88)/y + (g1^3*t^7.88)/y + (6*t^8.25)/y + (2*t^8.25)/(g1^2*y) + (2*g1^2*t^8.25)/y + t^8.62/(g1^3*y) + (5*t^8.62)/(g1*y) + (5*g1*t^8.62)/y + (g1^3*t^8.62)/y - t^4.5*y - 2*t^6.75*y - (t^6.75*y)/g1^2 - g1^2*t^6.75*y + 4*t^7.5*y + (3*t^7.5*y)/g1^2 + 3*g1^2*t^7.5*y + (t^7.88*y)/g1^3 + (4*t^7.88*y)/g1 + 4*g1*t^7.88*y + g1^3*t^7.88*y + 6*t^8.25*y + (2*t^8.25*y)/g1^2 + 2*g1^2*t^8.25*y + (t^8.62*y)/g1^3 + (5*t^8.62*y)/g1 + 5*g1*t^8.62*y + g1^3*t^8.62*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3232 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1q_2\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_1M_4$ + $ M_5\phi_1q_2^2$ | 0.676 | 0.8792 | 0.769 | [X:[], M:[1.125, 0.75, 0.75, 0.875, 0.75], q:[0.75, 0.375], qb:[0.5, 0.375], phi:[0.5]] | 4*t^2.25 + 2*t^2.62 + t^3. + 2*t^3.38 + t^3.75 + 2*t^4.12 + 11*t^4.5 + 8*t^4.88 + 7*t^5.25 + 8*t^5.62 + 3*t^6. - t^4.5/y - t^4.5*y | detail | {a: 2769/4096, c: 3601/4096, M1: 9/8, M2: 3/4, M3: 3/4, M4: 7/8, M5: 3/4, q1: 3/4, q2: 3/8, qb1: 1/2, qb2: 3/8, phi1: 1/2} |