Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3641 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ 0.625 0.8101 0.7716 [M:[1.0, 0.9607, 0.7353, 0.7549, 1.0393], q:[0.7549, 0.2451], qb:[0.5098, 0.5294], phi:[0.4902]] [M:[[0], [-8], [-3], [1], [8]], q:[[1], [-1]], qb:[[2], [6]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{4}$ ${}$ -2 t^2.206 + 2*t^2.265 + t^2.324 + 2*t^2.941 + t^3. + t^3.118 + t^3.794 + t^3.853 + t^4.412 + 2*t^4.471 + 5*t^4.529 + 3*t^4.588 + 2*t^4.647 + t^5.147 + 4*t^5.206 + 4*t^5.265 + 2*t^5.324 + 2*t^5.383 + t^5.441 + 3*t^5.882 - 2*t^6. + 3*t^6.059 + 3*t^6.118 + t^6.177 + t^6.236 + 4*t^6.735 + 8*t^6.794 + 6*t^6.853 + 5*t^6.912 + 3*t^6.971 + t^7.353 + t^7.412 + 6*t^7.471 + 6*t^7.529 + 6*t^7.588 + 6*t^7.647 + 3*t^7.706 + 2*t^7.765 + t^8.088 + 3*t^8.147 - 5*t^8.265 + 5*t^8.383 + 5*t^8.441 + 4*t^8.5 + t^8.559 + 5*t^8.823 - t^8.882 - 6*t^8.941 - t^4.471/y - t^6.676/y - t^6.735/y - t^7.412/y + (2*t^7.471)/y + (3*t^7.529)/y + (2*t^7.588)/y + (2*t^8.147)/y + (6*t^8.206)/y + (5*t^8.265)/y + (2*t^8.324)/y + (2*t^8.383)/y + t^8.441/y + t^8.941/y - t^4.471*y - t^6.676*y - t^6.735*y - t^7.412*y + 2*t^7.471*y + 3*t^7.529*y + 2*t^7.588*y + 2*t^8.147*y + 6*t^8.206*y + 5*t^8.265*y + 2*t^8.324*y + 2*t^8.383*y + t^8.441*y + t^8.941*y t^2.206/g1^3 + 2*g1*t^2.265 + g1^5*t^2.324 + (2*t^2.941)/g1^4 + t^3. + g1^8*t^3.118 + g1^3*t^3.794 + g1^7*t^3.853 + t^4.412/g1^6 + (2*t^4.471)/g1^2 + 5*g1^2*t^4.529 + 3*g1^6*t^4.588 + 2*g1^10*t^4.647 + t^5.147/g1^7 + (4*t^5.206)/g1^3 + 4*g1*t^5.265 + 2*g1^5*t^5.324 + 2*g1^9*t^5.383 + g1^13*t^5.441 + (3*t^5.882)/g1^8 - 2*t^6. + 3*g1^4*t^6.059 + 3*g1^8*t^6.118 + g1^12*t^6.177 + g1^16*t^6.236 + (4*t^6.735)/g1 + 8*g1^3*t^6.794 + 6*g1^7*t^6.853 + 5*g1^11*t^6.912 + 3*g1^15*t^6.971 + t^7.353/g1^10 + t^7.412/g1^6 + (6*t^7.471)/g1^2 + 6*g1^2*t^7.529 + 6*g1^6*t^7.588 + 6*g1^10*t^7.647 + 3*g1^14*t^7.706 + 2*g1^18*t^7.765 + t^8.088/g1^11 + (3*t^8.147)/g1^7 - 5*g1*t^8.265 + 5*g1^9*t^8.383 + 5*g1^13*t^8.441 + 4*g1^17*t^8.5 + g1^21*t^8.559 + (5*t^8.823)/g1^12 - t^8.882/g1^8 - (6*t^8.941)/g1^4 - t^4.471/(g1^2*y) - t^6.676/(g1^5*y) - t^6.735/(g1*y) - t^7.412/(g1^6*y) + (2*t^7.471)/(g1^2*y) + (3*g1^2*t^7.529)/y + (2*g1^6*t^7.588)/y + (2*t^8.147)/(g1^7*y) + (6*t^8.206)/(g1^3*y) + (5*g1*t^8.265)/y + (2*g1^5*t^8.324)/y + (2*g1^9*t^8.383)/y + (g1^13*t^8.441)/y + t^8.941/(g1^4*y) - (t^4.471*y)/g1^2 - (t^6.676*y)/g1^5 - (t^6.735*y)/g1 - (t^7.412*y)/g1^6 + (2*t^7.471*y)/g1^2 + 3*g1^2*t^7.529*y + 2*g1^6*t^7.588*y + (2*t^8.147*y)/g1^7 + (6*t^8.206*y)/g1^3 + 5*g1*t^8.265*y + 2*g1^5*t^8.324*y + 2*g1^9*t^8.383*y + g1^13*t^8.441*y + (t^8.941*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3222 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6318 0.8193 0.7712 [M:[1.0, 0.8927, 0.7098, 0.7634], q:[0.7634, 0.2366], qb:[0.5268, 0.5805], phi:[0.4732]] t^2.129 + 2*t^2.29 + t^2.451 + t^2.678 + 2*t^2.839 + t^3. + t^3.871 + t^4.032 + t^4.259 + 2*t^4.42 + 5*t^4.58 + 3*t^4.741 + t^4.807 + 2*t^4.902 + 3*t^4.968 + 5*t^5.129 + 4*t^5.29 + t^5.356 + t^5.451 + 2*t^5.517 + 4*t^5.678 - 2*t^6. - t^4.42/y - t^4.42*y detail