Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3623 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.6971 | 0.8992 | 0.7752 | [M:[0.8175, 0.7825, 0.7825, 0.8175, 1.2, 0.8, 0.7651, 0.8], q:[0.8, 0.3825], qb:[0.4175, 0.8], phi:[0.4]] | [M:[[1, 1], [-1, -1], [-1, 1], [1, -1], [0, 0], [0, 0], [-2, 0], [0, 0]], q:[[0, -1], [-1, 0]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{2}M_{3}$, ${ }M_{6}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{2}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{8}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{8}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{1}^{2}$, ${ }M_{7}\phi_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{8}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{2}$ | ${}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$ | -3 | t^2.295 + 2*t^2.348 + 3*t^2.4 + 2*t^2.452 + t^3.495 + t^4.59 + 2*t^4.643 + 6*t^4.695 + 8*t^4.748 + 11*t^4.8 + 6*t^4.852 + 3*t^4.905 + t^5.79 + 2*t^5.843 + 2*t^5.895 - 3*t^6. - 2*t^6.052 - t^6.105 + t^6.885 + 2*t^6.938 + 7*t^6.99 + 12*t^7.043 + 18*t^7.095 + 22*t^7.148 + 23*t^7.2 + 16*t^7.252 + 7*t^7.305 + 4*t^7.357 + t^8.085 + 2*t^8.138 + 5*t^8.19 + 4*t^8.243 - 12*t^8.348 - 16*t^8.4 - 16*t^8.452 - 8*t^8.505 - 2*t^8.557 - t^4.2/y - t^6.495/y - (2*t^6.548)/y - (2*t^6.6)/y - (2*t^6.652)/y + (2*t^7.643)/y + (4*t^7.695)/y + (10*t^7.748)/y + (9*t^7.8)/y + (8*t^7.852)/y + (2*t^7.905)/y - (2*t^8.895)/y - (4*t^8.948)/y - t^4.2*y - t^6.495*y - 2*t^6.548*y - 2*t^6.6*y - 2*t^6.652*y + 2*t^7.643*y + 4*t^7.695*y + 10*t^7.748*y + 9*t^7.8*y + 8*t^7.852*y + 2*t^7.905*y - 2*t^8.895*y - 4*t^8.948*y | t^2.295/g1^2 + t^2.348/(g1*g2) + (g2*t^2.348)/g1 + 3*t^2.4 + (g1*t^2.452)/g2 + g1*g2*t^2.452 + t^3.495/g1^2 + t^4.59/g1^4 + t^4.643/(g1^3*g2) + (g2*t^4.643)/g1^3 + (4*t^4.695)/g1^2 + t^4.695/(g1^2*g2^2) + (g2^2*t^4.695)/g1^2 + (4*t^4.748)/(g1*g2) + (4*g2*t^4.748)/g1 + 9*t^4.8 + t^4.8/g2^2 + g2^2*t^4.8 + (3*g1*t^4.852)/g2 + 3*g1*g2*t^4.852 + g1^2*t^4.905 + (g1^2*t^4.905)/g2^2 + g1^2*g2^2*t^4.905 + t^5.79/g1^4 + t^5.843/(g1^3*g2) + (g2*t^5.843)/g1^3 + (2*t^5.895)/g1^2 - 3*t^6. - (g1*t^6.052)/g2 - g1*g2*t^6.052 - g1^2*t^6.105 + t^6.885/g1^6 + t^6.938/(g1^5*g2) + (g2*t^6.938)/g1^5 + (5*t^6.99)/g1^4 + t^6.99/(g1^4*g2^2) + (g2^2*t^6.99)/g1^4 + t^7.043/(g1^3*g2^3) + (5*t^7.043)/(g1^3*g2) + (5*g2*t^7.043)/g1^3 + (g2^3*t^7.043)/g1^3 + (10*t^7.095)/g1^2 + (4*t^7.095)/(g1^2*g2^2) + (4*g2^2*t^7.095)/g1^2 + t^7.148/(g1*g2^3) + (10*t^7.148)/(g1*g2) + (10*g2*t^7.148)/g1 + (g2^3*t^7.148)/g1 + 15*t^7.2 + (4*t^7.2)/g2^2 + 4*g2^2*t^7.2 + (g1*t^7.252)/g2^3 + (7*g1*t^7.252)/g2 + 7*g1*g2*t^7.252 + g1*g2^3*t^7.252 + g1^2*t^7.305 + (3*g1^2*t^7.305)/g2^2 + 3*g1^2*g2^2*t^7.305 + (g1^3*t^7.357)/g2^3 + (g1^3*t^7.357)/g2 + g1^3*g2*t^7.357 + g1^3*g2^3*t^7.357 + t^8.085/g1^6 + t^8.138/(g1^5*g2) + (g2*t^8.138)/g1^5 + (3*t^8.19)/g1^4 + t^8.19/(g1^4*g2^2) + (g2^2*t^8.19)/g1^4 + (2*t^8.243)/(g1^3*g2) + (2*g2*t^8.243)/g1^3 - (6*t^8.348)/(g1*g2) - (6*g2*t^8.348)/g1 - 14*t^8.4 - t^8.4/g2^2 - g2^2*t^8.4 - (8*g1*t^8.452)/g2 - 8*g1*g2*t^8.452 - 6*g1^2*t^8.505 - (g1^2*t^8.505)/g2^2 - g1^2*g2^2*t^8.505 - (g1^3*t^8.557)/g2 - g1^3*g2*t^8.557 - t^4.2/y - t^6.495/(g1^2*y) - t^6.548/(g1*g2*y) - (g2*t^6.548)/(g1*y) - (2*t^6.6)/y - (g1*t^6.652)/(g2*y) - (g1*g2*t^6.652)/y + t^7.643/(g1^3*g2*y) + (g2*t^7.643)/(g1^3*y) + (4*t^7.695)/(g1^2*y) + (5*t^7.748)/(g1*g2*y) + (5*g2*t^7.748)/(g1*y) + (7*t^7.8)/y + t^7.8/(g2^2*y) + (g2^2*t^7.8)/y + (4*g1*t^7.852)/(g2*y) + (4*g1*g2*t^7.852)/y + (2*g1^2*t^7.905)/y - t^8.895/(g1^2*g2^2*y) - (g2^2*t^8.895)/(g1^2*y) - (2*t^8.948)/(g1*g2*y) - (2*g2*t^8.948)/(g1*y) - t^4.2*y - (t^6.495*y)/g1^2 - (t^6.548*y)/(g1*g2) - (g2*t^6.548*y)/g1 - 2*t^6.6*y - (g1*t^6.652*y)/g2 - g1*g2*t^6.652*y + (t^7.643*y)/(g1^3*g2) + (g2*t^7.643*y)/g1^3 + (4*t^7.695*y)/g1^2 + (5*t^7.748*y)/(g1*g2) + (5*g2*t^7.748*y)/g1 + 7*t^7.8*y + (t^7.8*y)/g2^2 + g2^2*t^7.8*y + (4*g1*t^7.852*y)/g2 + 4*g1*g2*t^7.852*y + 2*g1^2*t^7.905*y - (t^8.895*y)/(g1^2*g2^2) - (g2^2*t^8.895*y)/g1^2 - (2*t^8.948*y)/(g1*g2) - (2*g2*t^8.948*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
5299 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{9}\phi_{1}q_{2}^{2}$ | 0.7125 | 0.925 | 0.7703 | [M:[0.8, 0.8, 0.8, 0.8, 1.2, 0.8, 0.8, 0.8, 0.8], q:[0.8, 0.4], qb:[0.4, 0.8], phi:[0.4]] | 9*t^2.4 + 46*t^4.8 - 9*t^6. - t^4.2/y - t^4.2*y | detail | {a: 57/80, c: 37/40, M1: 4/5, M2: 4/5, M3: 4/5, M4: 4/5, M5: 6/5, M6: 4/5, M7: 4/5, M8: 4/5, M9: 4/5, q1: 4/5, q2: 2/5, qb1: 2/5, qb2: 4/5, phi1: 2/5} |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2996 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ | 0.6806 | 0.8702 | 0.782 | [M:[0.8175, 0.7825, 0.7825, 0.8175, 1.2, 0.8, 0.7651], q:[0.8, 0.3825], qb:[0.4175, 0.8], phi:[0.4]] | t^2.295 + 2*t^2.348 + 2*t^2.4 + 2*t^2.452 + t^3.495 + t^3.6 + t^4.59 + 2*t^4.643 + 5*t^4.695 + 6*t^4.748 + 8*t^4.8 + 4*t^4.852 + 3*t^4.905 + t^5.79 + 2*t^5.843 + 2*t^5.895 + 2*t^5.948 - t^6. - t^4.2/y - t^4.2*y | detail |