Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
358 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ | 0.6648 | 0.8527 | 0.7796 | [M:[0.8137, 1.1863, 0.8137, 0.6793], q:[0.75, 0.4363], qb:[0.4103, 0.4034], phi:[0.5]] | [M:[[1, 1], [-1, -1], [1, 1], [-2, 0]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ | -1 | t^2.038 + 2*t^2.441 + t^2.519 + t^2.54 + t^3. + t^3.46 + t^3.481 + t^3.92 + t^3.941 + t^4.019 + t^4.04 + t^4.076 + t^4.118 + 2*t^4.479 + t^4.557 + t^4.578 + 3*t^4.882 + 2*t^4.96 + 2*t^4.981 + 2*t^5.038 + t^5.059 + t^5.08 + 2*t^5.441 + t^5.498 + 2*t^5.519 + t^5.54 + t^5.901 + t^5.922 + t^5.958 + t^5.979 - t^6. + t^6.057 - t^6.099 + t^6.114 + t^6.156 + 2*t^6.361 + 2*t^6.382 + t^6.439 + 3*t^6.46 + 2*t^6.481 + 2*t^6.517 + t^6.538 + 2*t^6.559 + t^6.58 + t^6.595 + t^6.616 + t^6.637 + t^6.658 + 4*t^6.92 + 2*t^6.998 + t^7.019 - t^7.04 + 2*t^7.076 + t^7.097 + t^7.118 + 4*t^7.323 + t^7.38 + 3*t^7.401 + 2*t^7.422 + 3*t^7.479 + t^7.521 + t^7.536 + 3*t^7.557 + t^7.578 + t^7.62 + t^7.84 + t^7.861 + 3*t^7.882 + 2*t^7.939 + 3*t^7.96 + t^7.981 + t^7.996 + t^8.017 + t^8.038 + t^8.059 + t^8.08 + t^8.095 + t^8.152 + t^8.158 + t^8.194 + t^8.235 + t^8.342 + t^8.363 + 2*t^8.399 + t^8.42 - 4*t^8.441 - t^8.462 + t^8.477 + 3*t^8.498 - 2*t^8.519 - 4*t^8.54 + 2*t^8.555 + t^8.576 + t^8.597 - t^8.618 + t^8.633 - t^8.639 + t^8.654 + t^8.675 + t^8.696 + 3*t^8.802 + 3*t^8.823 + 2*t^8.88 + 4*t^8.901 + 2*t^8.922 + 5*t^8.958 + 2*t^8.979 - t^4.5/y - t^6.538/y - t^6.941/y + (2*t^7.479)/y + t^7.557/y + t^7.578/y + t^7.882/y + (2*t^7.96)/y + (2*t^7.981)/y + t^8.038/y + (2*t^8.059)/y + (2*t^8.441)/y + t^8.462/y + t^8.498/y + (2*t^8.519)/y + t^8.54/y - t^8.576/y + (2*t^8.901)/y + (2*t^8.922)/y + t^8.958/y + t^8.979/y - t^4.5*y - t^6.538*y - t^6.941*y + 2*t^7.479*y + t^7.557*y + t^7.578*y + t^7.882*y + 2*t^7.96*y + 2*t^7.981*y + t^8.038*y + 2*t^8.059*y + 2*t^8.441*y + t^8.462*y + t^8.498*y + 2*t^8.519*y + t^8.54*y - t^8.576*y + 2*t^8.901*y + 2*t^8.922*y + t^8.958*y + t^8.979*y | t^2.038/g1^2 + 2*g1*g2*t^2.441 + t^2.519/g1 + t^2.54/g2 + t^3. + g2*t^3.46 + g1*t^3.481 + g2^2*t^3.92 + g1*g2*t^3.941 + t^4.019/g1 + t^4.04/g2 + t^4.076/g1^4 + t^4.118/(g1^2*g2^2) + (2*g2*t^4.479)/g1 + t^4.557/g1^3 + t^4.578/(g1^2*g2) + 3*g1^2*g2^2*t^4.882 + 2*g2*t^4.96 + 2*g1*t^4.981 + (2*t^5.038)/g1^2 + t^5.059/(g1*g2) + t^5.08/g2^2 + 2*g1*g2*t^5.441 + (g2*t^5.498)/g1^2 + (2*t^5.519)/g1 + t^5.54/g2 + g1*g2^2*t^5.901 + g1^2*g2*t^5.922 + (g2^2*t^5.958)/g1^2 + (g2*t^5.979)/g1 - t^6. + t^6.057/g1^3 - t^6.099/(g1*g2^2) + t^6.114/g1^6 + t^6.156/(g1^4*g2^2) + 2*g1*g2^3*t^6.361 + 2*g1^2*g2^2*t^6.382 + (g2^2*t^6.439)/g1 + 3*g2*t^6.46 + 2*g1*t^6.481 + (2*g2*t^6.517)/g1^3 + t^6.538/g1^2 + (2*t^6.559)/(g1*g2) + t^6.58/g2^2 + t^6.595/g1^5 + t^6.616/(g1^4*g2) + t^6.637/(g1^3*g2^2) + t^6.658/(g1^2*g2^3) + 4*g2^2*t^6.92 + (2*g2*t^6.998)/g1^2 + t^7.019/g1 - t^7.04/g2 + (2*t^7.076)/g1^4 + t^7.097/(g1^3*g2) + t^7.118/(g1^2*g2^2) + 4*g1^3*g2^3*t^7.323 + g2^3*t^7.38 + 3*g1*g2^2*t^7.401 + 2*g1^2*g2*t^7.422 + (3*g2*t^7.479)/g1 + (g1*t^7.521)/g2 + (g2*t^7.536)/g1^4 + (3*t^7.557)/g1^3 + t^7.578/(g1^2*g2) + t^7.62/g2^3 + g2^4*t^7.84 + g1*g2^3*t^7.861 + 3*g1^2*g2^2*t^7.882 + (2*g2^2*t^7.939)/g1 + 3*g2*t^7.96 + g1*t^7.981 + (g2^2*t^7.996)/g1^4 + (g2*t^8.017)/g1^3 + t^8.038/g1^2 + t^8.059/(g1*g2) + t^8.08/g2^2 + t^8.095/g1^5 + t^8.152/g1^8 + t^8.158/(g1^2*g2^3) + t^8.194/(g1^6*g2^2) + t^8.235/(g1^4*g2^4) + g1^2*g2^3*t^8.342 + g1^3*g2^2*t^8.363 + (2*g2^3*t^8.399)/g1 + g2^2*t^8.42 - 4*g1*g2*t^8.441 - g1^2*t^8.462 + (g2^2*t^8.477)/g1^3 + (3*g2*t^8.498)/g1^2 - (2*t^8.519)/g1 - (4*t^8.54)/g2 + (2*g2*t^8.555)/g1^5 + t^8.576/g1^4 + t^8.597/(g1^3*g2) - t^8.618/(g1^2*g2^2) + t^8.633/g1^7 - t^8.639/(g1*g2^3) + t^8.654/(g1^6*g2) + t^8.675/(g1^5*g2^2) + t^8.696/(g1^4*g2^3) + 3*g1^2*g2^4*t^8.802 + 3*g1^3*g2^3*t^8.823 + 2*g2^3*t^8.88 + 4*g1*g2^2*t^8.901 + 2*g1^2*g2*t^8.922 + (5*g2^2*t^8.958)/g1^2 + (2*g2*t^8.979)/g1 - t^4.5/y - t^6.538/(g1^2*y) - (g1*g2*t^6.941)/y + (2*g2*t^7.479)/(g1*y) + t^7.557/(g1^3*y) + t^7.578/(g1^2*g2*y) + (g1^2*g2^2*t^7.882)/y + (2*g2*t^7.96)/y + (2*g1*t^7.981)/y + t^8.038/(g1^2*y) + (2*t^8.059)/(g1*g2*y) + (2*g1*g2*t^8.441)/y + (g1^2*t^8.462)/y + (g2*t^8.498)/(g1^2*y) + (2*t^8.519)/(g1*y) + t^8.54/(g2*y) - t^8.576/(g1^4*y) + (2*g1*g2^2*t^8.901)/y + (2*g1^2*g2*t^8.922)/y + (g2^2*t^8.958)/(g1^2*y) + (g2*t^8.979)/(g1*y) - t^4.5*y - (t^6.538*y)/g1^2 - g1*g2*t^6.941*y + (2*g2*t^7.479*y)/g1 + (t^7.557*y)/g1^3 + (t^7.578*y)/(g1^2*g2) + g1^2*g2^2*t^7.882*y + 2*g2*t^7.96*y + 2*g1*t^7.981*y + (t^8.038*y)/g1^2 + (2*t^8.059*y)/(g1*g2) + 2*g1*g2*t^8.441*y + g1^2*t^8.462*y + (g2*t^8.498*y)/g1^2 + (2*t^8.519*y)/g1 + (t^8.54*y)/g2 - (t^8.576*y)/g1^4 + 2*g1*g2^2*t^8.901*y + 2*g1^2*g2*t^8.922*y + (g2^2*t^8.958*y)/g1^2 + (g2*t^8.979*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
1810 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ | 0.6642 | 0.8511 | 0.7804 | [M:[0.83, 1.17, 0.83, 0.6801], q:[0.75, 0.42], qb:[0.41, 0.42], phi:[0.5]] | t^2.04 + 3*t^2.49 + t^2.52 + t^3. + t^3.48 + t^3.51 + 2*t^3.99 + 3*t^4.02 + t^4.081 + 3*t^4.53 + t^4.56 + 6*t^4.98 + 3*t^5.01 + 2*t^5.04 + 3*t^5.49 + 2*t^5.52 + t^5.55 + t^5.97 - t^6. - t^4.5/y - t^4.5*y | detail | |
566 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6647 | 0.8522 | 0.78 | [M:[0.8147, 1.1853, 0.8147, 0.6853], q:[0.75, 0.4353], qb:[0.4073, 0.4073], phi:[0.5]] | t^2.056 + 2*t^2.444 + 2*t^2.528 + t^3. + 2*t^3.472 + 2*t^3.944 + 2*t^4.028 + 2*t^4.112 + 2*t^4.5 + 2*t^4.584 + 3*t^4.888 + 4*t^4.972 + 4*t^5.056 + 2*t^5.444 + 4*t^5.528 + 2*t^5.916 + t^6. - t^4.5/y - t^4.5*y | detail | |
569 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ | 0.6855 | 0.8931 | 0.7675 | [M:[0.8163, 1.1837, 0.8163, 0.6776, 0.6837], q:[0.75, 0.4337], qb:[0.4112, 0.4051], phi:[0.5]] | t^2.033 + t^2.051 + 2*t^2.449 + t^2.516 + t^2.535 + t^3. + t^3.465 + t^3.484 + t^3.931 + t^4.016 + t^4.035 + t^4.066 + t^4.084 + 2*t^4.102 + 2*t^4.482 + 2*t^4.5 + t^4.549 + 2*t^4.567 + t^4.586 + 3*t^4.898 + 2*t^4.965 + 2*t^4.984 + 2*t^5.033 + 2*t^5.051 + t^5.069 + 2*t^5.449 + t^5.498 + 3*t^5.516 + 2*t^5.535 + t^5.914 + t^5.933 + t^5.964 + t^5.982 - t^6. - t^4.5/y - t^4.5*y | detail | |
568 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6855 | 0.8928 | 0.7678 | [M:[0.8171, 1.1829, 0.8171, 0.6829, 0.6829], q:[0.75, 0.4329], qb:[0.4085, 0.4085], phi:[0.5]] | 2*t^2.049 + 2*t^2.451 + 2*t^2.524 + t^3. + 2*t^3.476 + t^3.951 + 2*t^4.024 + 4*t^4.098 + 4*t^4.5 + 4*t^4.573 + 3*t^4.902 + 4*t^4.976 + 5*t^5.049 + 2*t^5.451 + 6*t^5.524 + 2*t^5.927 + t^6. - t^4.5/y - t^4.5*y | detail | |
1811 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ | 0.6789 | 0.8759 | 0.775 | [M:[0.8267, 1.1733, 0.8267, 0.6933, 0.8267], q:[0.75, 0.4233], qb:[0.4033, 0.4233], phi:[0.5]] | t^2.08 + 4*t^2.48 + t^2.54 + t^3. + t^3.46 + 2*t^3.98 + 3*t^4.04 + t^4.16 + 4*t^4.56 + t^4.62 + 10*t^4.96 + 4*t^5.02 + 2*t^5.08 + 4*t^5.48 + 2*t^5.54 + 2*t^5.94 - 4*t^6. - t^4.5/y - t^4.5*y | detail | {a: 325849/480000, c: 420449/480000, M1: 62/75, M2: 88/75, M3: 62/75, M4: 52/75, M5: 62/75, q1: 3/4, q2: 127/300, qb1: 121/300, qb2: 127/300, phi1: 1/2} |
567 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ | 0.6514 | 0.8288 | 0.7859 | [M:[0.8067, 1.1933, 0.8067, 0.7089, 1.1456], q:[0.75, 0.4433], qb:[0.3956, 0.4111], phi:[0.5]] | t^2.127 + 2*t^2.42 + t^2.517 + t^3. + 2*t^3.437 + t^3.483 + t^3.92 + t^3.967 + t^4.017 + t^4.063 + t^4.16 + t^4.253 + 2*t^4.547 + t^4.643 + 3*t^4.84 + 2*t^4.937 + t^5.033 + t^5.127 + 2*t^5.42 + t^5.517 + 2*t^5.563 + t^5.61 + 3*t^5.857 + t^5.903 + t^5.953 - 2*t^6. - t^4.5/y - t^4.5*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
225 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ | 0.644 | 0.812 | 0.7931 | [M:[0.8115, 1.1885, 0.8115], q:[0.75, 0.4385], qb:[0.4058, 0.4058], phi:[0.5]] | 2*t^2.435 + 2*t^2.533 + t^3. + 2*t^3.467 + 3*t^3.935 + 2*t^4.033 + t^4.131 + 3*t^4.869 + 4*t^4.967 + 3*t^5.065 + 2*t^5.435 + 2*t^5.533 + 2*t^5.902 - t^6. - t^4.5/y - t^4.5*y | detail |