Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3565 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1^2$ + $ M_2M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_7q_2\tilde{q}_1$ 0.6155 0.794 0.7752 [X:[1.5714], M:[1.0, 0.7143, 1.2857, 0.4286, 0.7143, 0.7152, 0.858], q:[0.2862, 0.7138], qb:[0.4281, 0.8576], phi:[0.4286]] [X:[[0]], M:[[0], [0], [0], [0], [0], [2], [2]], q:[[1], [-1]], qb:[[-1], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_5$, $ M_6$, $ M_7$, $ \phi_1^2$, $ M_7$, $ M_1$, $ \phi_1q_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_2^2$, $ M_2M_5$, $ M_5^2$, $ M_2M_6$, $ M_5M_6$, $ M_6^2$, $ \phi_1q_1q_2$, $ M_2M_6$, $ M_5M_6$, $ M_6^2$, $ M_2\phi_1^2$, $ M_5\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ X_1$, $ M_2M_7$, $ M_5M_7$, $ M_6\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_6M_7$, $ M_1M_2$, $ M_1M_5$, $ \phi_1^4$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1M_6$, $ M_7\phi_1^2$, $ M_2\phi_1q_1^2$, $ M_5\phi_1q_1^2$, $ M_7^2$, $ M_6\phi_1q_1^2$, $ M_1M_7$, $ M_1\phi_1^2$, $ \phi_1^3q_1^2$, $ \phi_1q_2^2$, $ M_5\phi_1q_1\tilde{q}_1$, $ M_6\phi_1q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ M_1M_7$, $ \phi_1^3q_1^2$, $ M_6\phi_1q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ M_7\phi_1q_1^2$, $ M_6q_1\tilde{q}_2$ $M_7\phi_1q_1\tilde{q}_1$, $ \phi_1^3q_1\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$ 0 2*t^2.14 + t^2.15 + 2*t^2.57 + 2*t^3. + 2*t^3.43 + 6*t^4.29 + 3*t^4.71 + 4*t^4.72 + 3*t^5.14 + 6*t^5.15 + 6*t^5.57 + 2*t^5.58 + 2*t^6.01 + 9*t^6.43 + t^6.44 - t^6.85 + 11*t^6.86 + t^6.87 - 2*t^7.28 + 19*t^7.29 + 2*t^7.71 + 18*t^7.72 - 7*t^8.14 + 13*t^8.15 - 2*t^8.57 + 14*t^8.58 - t^4.29/y - (2*t^6.43)/y - (2*t^6.86)/y + (3*t^7.29)/y + (4*t^7.71)/y + (4*t^7.72)/y + (4*t^8.14)/y + (5*t^8.15)/y + (6*t^8.57)/y + t^8.58/y - t^4.29*y - 2*t^6.43*y - 2*t^6.86*y + 3*t^7.29*y + 4*t^7.71*y + 4*t^7.72*y + 4*t^8.14*y + 5*t^8.15*y + 6*t^8.57*y + t^8.58*y 2*t^2.14 + g1^2*t^2.15 + t^2.57 + g1^2*t^2.57 + t^3. + g1^2*t^3. + t^3.43 + g1^2*t^3.43 + 3*t^4.29 + 2*g1^2*t^4.29 + g1^4*t^4.29 + 3*t^4.71 + 3*g1^2*t^4.72 + g1^4*t^4.72 + 3*t^5.14 + 4*g1^2*t^5.15 + 2*g1^4*t^5.15 + 2*t^5.57 + 4*g1^2*t^5.57 + 2*g1^4*t^5.58 - t^6. - t^6./g1^2 + 2*g1^2*t^6. + 2*g1^4*t^6.01 + 3*t^6.43 - t^6.43/g1^2 + 4*g1^2*t^6.43 + 3*g1^4*t^6.43 + g1^6*t^6.44 - t^6.85/g1^2 + 2*t^6.86 + 5*g1^2*t^6.86 + 4*g1^4*t^6.86 + g1^6*t^6.87 - (2*t^7.28)/g1^2 + 3*t^7.29 + 8*g1^2*t^7.29 + 6*g1^4*t^7.29 + 2*g1^6*t^7.29 + 3*t^7.71 - t^7.71/g1^2 + 8*g1^2*t^7.72 + 7*g1^4*t^7.72 + 3*g1^6*t^7.72 - 4*t^8.14 - (3*t^8.14)/g1^2 + 3*g1^2*t^8.15 + 7*g1^4*t^8.15 + 3*g1^6*t^8.15 - t^8.57 - (4*t^8.57)/g1^2 + 3*g1^2*t^8.57 + 8*g1^4*t^8.58 + 5*g1^6*t^8.58 + g1^8*t^8.58 - t^4.29/y - t^6.43/y - (g1^2*t^6.43)/y - t^6.86/y - (g1^2*t^6.86)/y + t^7.29/y + (2*g1^2*t^7.29)/y + (3*t^7.71)/y + t^7.71/(g1^2*y) + (3*g1^2*t^7.72)/y + (g1^4*t^7.72)/y + (3*t^8.14)/y + t^8.14/(g1^2*y) + (4*g1^2*t^8.15)/y + (g1^4*t^8.15)/y + (2*t^8.57)/y + (4*g1^2*t^8.57)/y + (g1^4*t^8.58)/y - t^4.29*y - t^6.43*y - g1^2*t^6.43*y - t^6.86*y - g1^2*t^6.86*y + t^7.29*y + 2*g1^2*t^7.29*y + 3*t^7.71*y + (t^7.71*y)/g1^2 + 3*g1^2*t^7.72*y + g1^4*t^7.72*y + 3*t^8.14*y + (t^8.14*y)/g1^2 + 4*g1^2*t^8.15*y + g1^4*t^8.15*y + 2*t^8.57*y + 4*g1^2*t^8.57*y + g1^4*t^8.58*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
5237 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1^2$ + $ M_2M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_7q_2\tilde{q}_1$ + $ M_8\phi_1q_1\tilde{q}_1$ 0.6281 0.8155 0.7702 [X:[1.5714], M:[1.0, 0.7143, 1.2857, 0.4286, 0.7143, 0.7152, 0.858, 0.8571], q:[0.2862, 0.7138], qb:[0.4281, 0.8576], phi:[0.4286]] 2*t^2.14 + t^2.15 + 3*t^2.57 + 2*t^3. + t^3.43 + 6*t^4.29 + 5*t^4.71 + 5*t^4.72 + 5*t^5.14 + 7*t^5.15 + 5*t^5.57 + 2*t^5.58 - t^6. - t^4.29/y - t^4.29*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2967 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1^2$ + $ M_2M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ 0.6046 0.7716 0.7835 [X:[1.5714], M:[1.0, 0.7143, 1.2857, 0.4286, 0.7143, 0.7557], q:[0.3064, 0.6936], qb:[0.4079, 0.8779], phi:[0.4286]] 2*t^2.14 + t^2.27 + t^2.57 + t^3. + t^3.12 + t^3.3 + t^3.43 + t^3.55 + 3*t^4.29 + 2*t^4.41 + t^4.53 + 3*t^4.71 + t^4.84 + 3*t^5.14 + 3*t^5.27 + t^5.39 + 2*t^5.45 + 3*t^5.57 + 3*t^5.7 + t^5.82 - t^6. - t^4.29/y - t^4.29*y detail