Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3257 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ 0.6178 0.7981 0.7742 [M:[0.9643, 1.107, 0.893, 0.8481, 0.893], q:[0.7411, 0.2946], qb:[0.4108, 0.4822], phi:[0.5178]] [M:[[4], [-12], [12], [-11], [12]], q:[[1], [-5]], qb:[[10], [2]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{5}$, ${ }M_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$ ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 0 t^2.116 + t^2.33 + t^2.544 + 2*t^2.679 + t^2.893 + t^3.107 + 2*t^3.67 + t^3.884 + t^4.018 + 2*t^4.232 + 2*t^4.446 + 2*t^4.661 + 2*t^4.795 + t^4.875 + 3*t^5.009 + t^5.089 + 4*t^5.223 + 3*t^5.358 + t^5.437 + 2*t^5.572 + 3*t^5.786 + t^6.135 + t^6.214 + 5*t^6.349 + t^6.428 + 4*t^6.563 + 2*t^6.697 + 3*t^6.777 + 4*t^6.911 + t^6.991 + 5*t^7.125 + t^7.205 + 5*t^7.339 + t^7.419 + 3*t^7.474 + 2*t^7.554 + t^7.633 + 6*t^7.688 + 2*t^7.768 + 7*t^7.902 + 5*t^8.037 + t^8.116 + 5*t^8.251 - t^8.33 + 7*t^8.465 - 3*t^8.544 + t^8.679 + 2*t^8.814 + t^8.893 + t^8.972 - t^4.554/y - t^7.098/y - t^7.232/y + t^7.446/y + t^7.661/y + (2*t^7.795)/y + (2*t^7.875)/y + (4*t^8.009)/y + (4*t^8.223)/y + t^8.358/y + (2*t^8.437)/y + (2*t^8.572)/y + t^8.651/y + (4*t^8.786)/y - t^4.554*y - t^7.098*y - t^7.232*y + t^7.446*y + t^7.661*y + 2*t^7.795*y + 2*t^7.875*y + 4*t^8.009*y + 4*t^8.223*y + t^8.358*y + 2*t^8.437*y + 2*t^8.572*y + t^8.651*y + 4*t^8.786*y g1^5*t^2.116 + t^2.33/g1^3 + t^2.544/g1^11 + 2*g1^12*t^2.679 + g1^4*t^2.893 + t^3.107/g1^4 + 2*g1^3*t^3.67 + t^3.884/g1^5 + g1^18*t^4.018 + 2*g1^10*t^4.232 + 2*g1^2*t^4.446 + (2*t^4.661)/g1^6 + 2*g1^17*t^4.795 + t^4.875/g1^14 + 3*g1^9*t^5.009 + t^5.089/g1^22 + 4*g1*t^5.223 + 3*g1^24*t^5.358 + t^5.437/g1^7 + 2*g1^16*t^5.572 + 3*g1^8*t^5.786 + g1^23*t^6.135 + t^6.214/g1^8 + 5*g1^15*t^6.349 + t^6.428/g1^16 + 4*g1^7*t^6.563 + 2*g1^30*t^6.697 + (3*t^6.777)/g1 + 4*g1^22*t^6.911 + t^6.991/g1^9 + 5*g1^14*t^7.125 + t^7.205/g1^17 + 5*g1^6*t^7.339 + t^7.419/g1^25 + 3*g1^29*t^7.474 + (2*t^7.554)/g1^2 + t^7.633/g1^33 + 6*g1^21*t^7.688 + (2*t^7.768)/g1^10 + 7*g1^13*t^7.902 + 5*g1^36*t^8.037 + g1^5*t^8.116 + 5*g1^28*t^8.251 - t^8.33/g1^3 + 7*g1^20*t^8.465 - (3*t^8.544)/g1^11 + g1^12*t^8.679 + 2*g1^35*t^8.814 + g1^4*t^8.893 + t^8.972/g1^27 - t^4.554/(g1^2*y) - t^7.098/(g1^13*y) - (g1^10*t^7.232)/y + (g1^2*t^7.446)/y + t^7.661/(g1^6*y) + (2*g1^17*t^7.795)/y + (2*t^7.875)/(g1^14*y) + (4*g1^9*t^8.009)/y + (4*g1*t^8.223)/y + (g1^24*t^8.358)/y + (2*t^8.437)/(g1^7*y) + (2*g1^16*t^8.572)/y + t^8.651/(g1^15*y) + (4*g1^8*t^8.786)/y - (t^4.554*y)/g1^2 - (t^7.098*y)/g1^13 - g1^10*t^7.232*y + g1^2*t^7.446*y + (t^7.661*y)/g1^6 + 2*g1^17*t^7.795*y + (2*t^7.875*y)/g1^14 + 4*g1^9*t^8.009*y + 4*g1*t^8.223*y + g1^24*t^8.358*y + (2*t^8.437*y)/g1^7 + 2*g1^16*t^8.572*y + (t^8.651*y)/g1^15 + 4*g1^8*t^8.786*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2744 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ 0.6098 0.7827 0.7791 [M:[0.9775, 1.0675, 0.9325, 0.8119], q:[0.7444, 0.2781], qb:[0.4437, 0.4887], phi:[0.5113]] t^2.166 + t^2.301 + t^2.436 + t^2.797 + t^2.932 + t^3.068 + t^3.203 + 2*t^3.699 + t^3.834 + t^4.196 + 2*t^4.331 + 2*t^4.466 + 2*t^4.601 + t^4.736 + t^4.871 + t^4.963 + 2*t^5.098 + 3*t^5.233 + 2*t^5.368 + t^5.503 + t^5.595 + t^5.638 + t^5.73 + 2*t^5.865 + t^6. - t^4.534/y - t^4.534*y detail