Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3256 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_1$ 0.6466 0.8508 0.76 [X:[], M:[1.0, 0.9304, 0.7331, 0.7146, 1.0696, 0.6983], q:[0.7587, 0.2413], qb:[0.543, 0.5267], phi:[0.4826]] [X:[], M:[[0, 0], [-8, -8], [-5, 3], [-1, -9], [8, 8], [-9, -1]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_4$, $ M_3$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1^2$, $ \phi_1q_2^2$, $ M_1$, $ M_5$, $ \phi_1q_2\tilde{q}_2$, $ M_6^2$, $ M_4M_6$, $ M_4^2$, $ M_3M_6$, $ M_3M_4$, $ M_3^2$, $ M_6q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_6\phi_1^2$, $ M_6\phi_1q_2^2$, $ M_4\phi_1^2$, $ M_4\phi_1q_2^2$, $ M_1M_6$, $ M_3\phi_1^2$, $ M_3\phi_1q_2^2$, $ M_1M_3$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_5$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_5$, $ M_5q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ \phi_1^4$, $ \phi_1^3q_2^2$, $ \phi_1^2q_2^4$, $ M_6\phi_1q_2\tilde{q}_2$, $ M_1\phi_1^2$, $ M_4\phi_1q_2\tilde{q}_2$ . -3 t^2.09 + t^2.14 + t^2.2 + t^2.3 + t^2.35 + 2*t^2.9 + t^3. + t^3.21 + t^3.75 + t^4.19 + t^4.24 + 2*t^4.29 + t^4.34 + 2*t^4.4 + 2*t^4.45 + 2*t^4.5 + t^4.55 + 2*t^4.61 + 2*t^4.66 + 2*t^4.71 + 2*t^4.99 + 2*t^5.04 + 2*t^5.09 + 3*t^5.2 + 2*t^5.25 + 2*t^5.3 + 2*t^5.35 + t^5.41 + t^5.51 + t^5.56 + 3*t^5.79 + t^5.85 + 2*t^5.9 - 3*t^6. - t^6.05 + t^6.06 + 2*t^6.1 + t^6.28 + t^6.33 + t^6.38 + t^6.39 + t^6.42 + t^6.43 + t^6.44 + 3*t^6.49 + 2*t^6.54 + t^6.59 + 2*t^6.6 + t^6.64 + 3*t^6.65 + 3*t^6.7 + 4*t^6.75 + 2*t^6.8 + 2*t^6.81 + 2*t^6.85 + 2*t^6.91 + 3*t^6.96 + 2*t^7.01 + 2*t^7.06 + 2*t^7.09 + 2*t^7.13 + 2*t^7.18 + 2*t^7.19 + t^7.24 + 4*t^7.29 + 4*t^7.34 + 2*t^7.39 + 3*t^7.4 + t^7.45 + 6*t^7.5 + 3*t^7.55 + 3*t^7.6 + 3*t^7.61 + 2*t^7.66 + 2*t^7.71 - t^7.81 + 2*t^7.82 + 2*t^7.87 + 3*t^7.89 + 2*t^7.91 + 3*t^7.93 + t^7.94 + 3*t^7.99 - 2*t^8.14 + t^8.15 - t^8.19 + t^8.2 + 2*t^8.25 - 4*t^8.3 - 6*t^8.35 + 2*t^8.36 + t^8.38 - t^8.4 + t^8.41 + t^8.43 + t^8.46 + 2*t^8.48 + 2*t^8.53 + 2*t^8.58 + 2*t^8.59 + t^8.62 + t^8.63 + 2*t^8.64 + 7*t^8.69 + t^8.72 + 5*t^8.74 + t^8.77 + t^8.78 + 3*t^8.79 + 4*t^8.8 + t^8.84 + 3*t^8.85 - 2*t^8.9 + 3*t^8.95 + 2*t^8.99 - t^4.45/y - t^6.54/y - t^6.59/y - t^6.65/y + t^7.24/y + t^7.29/y + t^7.4/y + (2*t^7.45)/y + (2*t^7.5)/y + (2*t^7.55)/y + t^7.66/y + (2*t^7.99)/y + (2*t^8.04)/y + (3*t^8.09)/y + t^8.14/y + (3*t^8.2)/y + (3*t^8.25)/y + (3*t^8.3)/y + (3*t^8.35)/y + t^8.41/y + t^8.51/y + t^8.56/y - t^8.64/y - t^8.69/y - (2*t^8.74)/y + (3*t^8.9)/y + t^8.95/y - t^4.45*y - t^6.54*y - t^6.59*y - t^6.65*y + t^7.24*y + t^7.29*y + t^7.4*y + 2*t^7.45*y + 2*t^7.5*y + 2*t^7.55*y + t^7.66*y + 2*t^7.99*y + 2*t^8.04*y + 3*t^8.09*y + t^8.14*y + 3*t^8.2*y + 3*t^8.25*y + 3*t^8.3*y + 3*t^8.35*y + t^8.41*y + t^8.51*y + t^8.56*y - t^8.64*y - t^8.69*y - 2*t^8.74*y + 3*t^8.9*y + t^8.95*y t^2.09/(g1^9*g2) + t^2.14/(g1*g2^9) + (g2^3*t^2.2)/g1^5 + (g2^7*t^2.3)/g1 + (g1^7*t^2.35)/g2 + (2*t^2.9)/(g1^4*g2^4) + t^3. + g1^8*g2^8*t^3.21 + (g2^5*t^3.75)/g1^3 + t^4.19/(g1^18*g2^2) + t^4.24/(g1^10*g2^10) + t^4.29/(g1^2*g2^18) + (g2^2*t^4.29)/g1^14 + t^4.34/(g1^6*g2^6) + (2*g2^6*t^4.4)/g1^10 + (2*t^4.45)/(g1^2*g2^2) + (g1^6*t^4.5)/g2^10 + (g2^10*t^4.5)/g1^6 + g1^2*g2^2*t^4.55 + (2*g2^14*t^4.61)/g1^2 + 2*g1^6*g2^6*t^4.66 + (2*g1^14*t^4.71)/g2^2 + (2*t^4.99)/(g1^13*g2^5) + (2*t^5.04)/(g1^5*g2^13) + (2*t^5.09)/(g1^9*g2) + (3*g2^3*t^5.2)/g1^5 + (2*g1^3*t^5.25)/g2^5 + (2*g2^7*t^5.3)/g1 + (2*g1^7*t^5.35)/g2 + g1^3*g2^11*t^5.41 + g1^7*g2^15*t^5.51 + g1^15*g2^7*t^5.56 + (3*t^5.79)/(g1^8*g2^8) + (g2^4*t^5.85)/g1^12 + (2*t^5.9)/(g1^4*g2^4) - 3*t^6. - (g1^8*t^6.05)/g2^8 + (g2^12*t^6.06)/g1^4 + 2*g1^4*g2^4*t^6.1 + t^6.28/(g1^27*g2^3) + t^6.33/(g1^19*g2^11) + t^6.38/(g1^11*g2^19) + (g2*t^6.39)/g1^23 + g1^16*g2^16*t^6.42 + t^6.43/(g1^3*g2^27) + t^6.44/(g1^15*g2^7) + t^6.49/(g1^7*g2^15) + (2*g2^5*t^6.49)/g1^19 + (2*t^6.54)/(g1^11*g2^3) + t^6.59/(g1^3*g2^11) + (2*g2^9*t^6.6)/g1^15 + (g1^5*t^6.64)/g2^19 + (3*g2*t^6.65)/g1^7 + (3*g2^13*t^6.7)/g1^11 + (4*g2^5*t^6.75)/g1^3 + (2*g1^5*t^6.8)/g2^3 + (2*g2^17*t^6.81)/g1^7 + (2*g1^13*t^6.85)/g2^11 + (2*g2^21*t^6.91)/g1^3 + 3*g1^5*g2^13*t^6.96 + 2*g1^13*g2^5*t^7.01 + (2*g1^21*t^7.06)/g2^3 + (2*t^7.09)/(g1^22*g2^6) + (2*t^7.13)/(g1^14*g2^14) + (2*t^7.18)/(g1^6*g2^22) + (2*t^7.19)/(g1^18*g2^2) + t^7.24/(g1^10*g2^10) + (4*g2^2*t^7.29)/g1^14 + (4*t^7.34)/(g1^6*g2^6) + (2*g1^2*t^7.39)/g2^14 + (3*g2^6*t^7.4)/g1^10 + t^7.45/(g1^2*g2^2) + (6*g2^10*t^7.5)/g1^6 + 3*g1^2*g2^2*t^7.55 + (3*g1^10*t^7.6)/g2^6 + (3*g2^14*t^7.61)/g1^2 + 2*g1^6*g2^6*t^7.66 + (2*g1^14*t^7.71)/g2^2 - g1^18*g2^2*t^7.81 + 2*g1^6*g2^22*t^7.82 + 2*g1^14*g2^14*t^7.87 + (3*t^7.89)/(g1^17*g2^9) + 2*g1^22*g2^6*t^7.91 + (3*t^7.93)/(g1^9*g2^17) + (g2^3*t^7.94)/g1^21 + (3*t^7.99)/(g1^13*g2^5) - (2*t^8.14)/(g1*g2^9) + (g2^11*t^8.15)/g1^13 - (g1^7*t^8.19)/g2^17 + (g2^3*t^8.2)/g1^5 + (2*g1^3*t^8.25)/g2^5 - (4*g2^7*t^8.3)/g1 - (6*g1^7*t^8.35)/g2 + (2*g2^19*t^8.36)/g1^5 + t^8.38/(g1^36*g2^4) - (g1^15*t^8.4)/g2^9 + g1^3*g2^11*t^8.41 + t^8.43/(g1^28*g2^12) + g1^11*g2^3*t^8.46 + t^8.48/g1^32 + t^8.48/(g1^20*g2^20) + t^8.53/(g1^12*g2^28) + t^8.53/(g1^24*g2^8) + t^8.58/(g1^4*g2^36) + t^8.58/(g1^16*g2^16) + (2*g2^4*t^8.59)/g1^28 + g1^11*g2^19*t^8.62 + t^8.63/(g1^8*g2^24) + (2*t^8.64)/(g1^20*g2^4) + (5*t^8.69)/(g1^12*g2^12) + (2*g2^8*t^8.69)/g1^24 + g1^15*g2^23*t^8.72 + (4*t^8.74)/g1^16 + t^8.74/(g1^4*g2^20) + g1^23*g2^15*t^8.77 + (g1^4*t^8.78)/g2^28 + (3*t^8.79)/(g1^8*g2^8) + (4*g2^12*t^8.8)/g1^20 + t^8.84/g2^16 + (3*g2^4*t^8.85)/g1^12 - (5*t^8.9)/(g1^4*g2^4) + (3*g2^16*t^8.9)/g1^16 + (3*g2^8*t^8.95)/g1^8 + (2*g1^12*t^8.99)/g2^20 - t^4.45/(g1^2*g2^2*y) - t^6.54/(g1^11*g2^3*y) - t^6.59/(g1^3*g2^11*y) - (g2*t^6.65)/(g1^7*y) + t^7.24/(g1^10*g2^10*y) + (g2^2*t^7.29)/(g1^14*y) + (g2^6*t^7.4)/(g1^10*y) + (2*t^7.45)/(g1^2*g2^2*y) + (g1^6*t^7.5)/(g2^10*y) + (g2^10*t^7.5)/(g1^6*y) + (2*g1^2*g2^2*t^7.55)/y + (g1^6*g2^6*t^7.66)/y + (2*t^7.99)/(g1^13*g2^5*y) + (2*t^8.04)/(g1^5*g2^13*y) + (3*t^8.09)/(g1^9*g2*y) + t^8.14/(g1*g2^9*y) + (3*g2^3*t^8.2)/(g1^5*y) + (3*g1^3*t^8.25)/(g2^5*y) + (3*g2^7*t^8.3)/(g1*y) + (3*g1^7*t^8.35)/(g2*y) + (g1^3*g2^11*t^8.41)/y + (g1^7*g2^15*t^8.51)/y + (g1^15*g2^7*t^8.56)/y - t^8.64/(g1^20*g2^4*y) - t^8.69/(g1^12*g2^12*y) - t^8.74/(g1^16*y) - t^8.74/(g1^4*g2^20*y) + (3*t^8.9)/(g1^4*g2^4*y) + (g2^8*t^8.95)/(g1^8*y) - (t^4.45*y)/(g1^2*g2^2) - (t^6.54*y)/(g1^11*g2^3) - (t^6.59*y)/(g1^3*g2^11) - (g2*t^6.65*y)/g1^7 + (t^7.24*y)/(g1^10*g2^10) + (g2^2*t^7.29*y)/g1^14 + (g2^6*t^7.4*y)/g1^10 + (2*t^7.45*y)/(g1^2*g2^2) + (g1^6*t^7.5*y)/g2^10 + (g2^10*t^7.5*y)/g1^6 + 2*g1^2*g2^2*t^7.55*y + g1^6*g2^6*t^7.66*y + (2*t^7.99*y)/(g1^13*g2^5) + (2*t^8.04*y)/(g1^5*g2^13) + (3*t^8.09*y)/(g1^9*g2) + (t^8.14*y)/(g1*g2^9) + (3*g2^3*t^8.2*y)/g1^5 + (3*g1^3*t^8.25*y)/g2^5 + (3*g2^7*t^8.3*y)/g1 + (3*g1^7*t^8.35*y)/g2 + g1^3*g2^11*t^8.41*y + g1^7*g2^15*t^8.51*y + g1^15*g2^7*t^8.56*y - (t^8.64*y)/(g1^20*g2^4) - (t^8.69*y)/(g1^12*g2^12) - (t^8.74*y)/g1^16 - (t^8.74*y)/(g1^4*g2^20) + (3*t^8.9*y)/(g1^4*g2^4) + (g2^8*t^8.95*y)/g1^8


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3680 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ 0.6454 0.8481 0.761 [X:[], M:[1.0, 0.9472, 0.7566, 0.7038, 1.0528, 0.7302], q:[0.7566, 0.2434], qb:[0.5132, 0.5396], phi:[0.4868]] t^2.11 + t^2.19 + 2*t^2.27 + t^2.35 + 2*t^2.92 + t^3. + t^3.16 + t^3.81 + t^4.22 + t^4.3 + 3*t^4.38 + 3*t^4.46 + 5*t^4.54 + 3*t^4.62 + 2*t^4.7 + 2*t^5.03 + 2*t^5.11 + 4*t^5.19 + 5*t^5.27 + 2*t^5.35 + 2*t^5.43 + t^5.51 + 3*t^5.84 + t^5.92 - 2*t^6. - t^4.46/y - t^4.46*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2742 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ + $ M_2M_5$ 0.6262 0.8118 0.7713 [X:[], M:[1.0, 0.9403, 0.7392, 0.716, 1.0597], q:[0.7575, 0.2425], qb:[0.5332, 0.5265], phi:[0.4851]] t^2.15 + t^2.22 + t^2.31 + t^2.33 + 2*t^2.91 + t^3. + t^3.18 + t^3.76 + t^3.87 + t^4.3 + t^4.37 + t^4.44 + t^4.46 + t^4.48 + t^4.52 + t^4.54 + 2*t^4.61 + 2*t^4.63 + 2*t^4.65 + 2*t^5.06 + t^5.13 + 3*t^5.22 + 2*t^5.24 + t^5.31 + 2*t^5.33 + t^5.4 + t^5.49 + t^5.51 + 3*t^5.82 + 2*t^5.91 - 3*t^6. - t^4.46/y - t^4.46*y detail