Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
325 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_1$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_2\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ 0.7546 0.9174 0.8226 [X:[], M:[0.7904, 0.7904, 0.7904], q:[0.6048, 0.6048], qb:[0.6048, 0.6048], phi:[0.3952]] [X:[], M:[[-2], [-2], [-2]], q:[[1], [1]], qb:[[1], [1]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ M_3$, $ \phi_1^2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ M_1M_3$, $ M_2M_3$, $ M_3^2$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ \phi_1^4$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$ $M_2q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$ -4 4*t^2.37 + 3*t^3.63 + 10*t^4.74 + 10*t^4.81 - 4*t^6. + 20*t^7.11 + 25*t^7.19 + 5*t^7.26 - 24*t^8.37 + 5*t^8.44 - t^4.19/y - (4*t^6.56)/y + (6*t^7.74)/y + (4*t^7.81)/y - (10*t^8.93)/y - t^4.19*y - 4*t^6.56*y + 6*t^7.74*y + 4*t^7.81*y - 10*t^8.93*y (4*t^2.37)/g1^2 + 3*g1^2*t^3.63 + (10*t^4.74)/g1^4 + 10*g1*t^4.81 - 4*t^6. + (20*t^7.11)/g1^6 + (25*t^7.19)/g1 + 5*g1^4*t^7.26 - (24*t^8.37)/g1^2 + 5*g1^3*t^8.44 - t^4.19/(g1*y) - (4*t^6.56)/(g1^3*y) + (6*t^7.74)/(g1^4*y) + (4*g1*t^7.81)/y - (10*t^8.93)/(g1^5*y) - (t^4.19*y)/g1 - (4*t^6.56*y)/g1^3 + (6*t^7.74*y)/g1^4 + 4*g1*t^7.81*y - (10*t^8.93*y)/g1^5


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
505 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_1$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_2\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_2$ 0.7722 0.9495 0.8132 [X:[], M:[0.7745, 0.7745, 0.7745, 0.7745], q:[0.6127, 0.6127], qb:[0.6127, 0.6127], phi:[0.3873]] 5*t^2.32 + 2*t^3.68 + 15*t^4.65 + 10*t^4.84 - 6*t^6. - t^4.16/y - t^4.16*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
205 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_1$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_2\tilde{q}_1$ 0.7556 0.9204 0.821 [X:[], M:[0.7942, 0.7942, 0.7604], q:[0.586, 0.6198], qb:[0.6198, 0.586], phi:[0.3971]] t^2.28 + 3*t^2.38 + t^3.52 + 2*t^3.62 + t^4.56 + 3*t^4.66 + 3*t^4.71 + 6*t^4.77 + 4*t^4.81 + 3*t^4.91 + t^5.8 + t^5.9 - 2*t^6. - t^4.19/y - t^4.19*y detail