Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3239 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.6313 0.784 0.8052 [X:[1.6], M:[0.4, 1.2, 0.8, 0.7567, 0.8], q:[0.8325, 0.7675], qb:[0.4108, 0.3892], phi:[0.4]] [X:[[0, 0]], M:[[0, 0], [0, 0], [0, 0], [1, 1], [0, 0]], q:[[-1, 0], [1, 0]], qb:[[0, -1], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{3}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }X_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.27 + 3*t^2.4 + t^3.47 + 2*t^3.535 + 2*t^3.665 + t^4.54 + 3*t^4.67 + 7*t^4.8 + t^5.74 + 2*t^5.805 + 2*t^5.87 + 6*t^5.935 - 3*t^6. + 4*t^6.065 - t^6.13 + t^6.811 + 4*t^6.94 + 2*t^7.005 + 8*t^7.07 - 2*t^7.135 + 12*t^7.2 - 4*t^7.265 + t^7.33 + t^8.011 + 2*t^8.075 + 2*t^8.14 + 6*t^8.205 + 10*t^8.335 - 11*t^8.4 + 6*t^8.465 - 4*t^8.53 - t^4.2/y - t^6.47/y - (2*t^6.6)/y + (3*t^7.67)/y + (5*t^7.8)/y + t^7.93/y + (2*t^8.805)/y + t^8.87/y + (8*t^8.935)/y - t^4.2*y - t^6.47*y - 2*t^6.6*y + 3*t^7.67*y + 5*t^7.8*y + t^7.93*y + 2*t^8.805*y + t^8.87*y + 8*t^8.935*y g1*g2*t^2.27 + 3*t^2.4 + g1*g2*t^3.47 + (g1*t^3.535)/g2 + g2^2*t^3.535 + t^3.665/g2^2 + (g2*t^3.665)/g1 + g1^2*g2^2*t^4.54 + 3*g1*g2*t^4.67 + 7*t^4.8 + g1^2*g2^2*t^5.74 + g1^2*t^5.805 + g1*g2^3*t^5.805 + 2*g1*g2*t^5.87 + (3*g1*t^5.935)/g2 + 3*g2^2*t^5.935 - 3*t^6. + (2*t^6.065)/g2^2 + (2*g2*t^6.065)/g1 - t^6.13/(g1*g2) + g1^3*g2^3*t^6.811 + 4*g1^2*g2^2*t^6.94 + g1^2*t^7.005 + g1*g2^3*t^7.005 + (g1^2*t^7.07)/g2^2 + 6*g1*g2*t^7.07 + g2^4*t^7.07 - (g1*t^7.135)/g2 - g2^2*t^7.135 + 10*t^7.2 + (g1*t^7.2)/g2^3 + (g2^3*t^7.2)/g1 - (2*t^7.265)/g2^2 - (2*g2*t^7.265)/g1 + t^7.33/g2^4 - t^7.33/(g1*g2) + (g2^2*t^7.33)/g1^2 + g1^3*g2^3*t^8.011 + g1^3*g2*t^8.075 + g1^2*g2^4*t^8.075 + 2*g1^2*g2^2*t^8.14 + 3*g1^2*t^8.205 + 3*g1*g2^3*t^8.205 + (5*g1*t^8.335)/g2 + 5*g2^2*t^8.335 - 11*t^8.4 + (3*t^8.465)/g2^2 + (3*g2*t^8.465)/g1 - (4*t^8.53)/(g1*g2) - t^4.2/y - (g1*g2*t^6.47)/y - (2*t^6.6)/y + (3*g1*g2*t^7.67)/y + (5*t^7.8)/y + t^7.93/(g1*g2*y) + (g1^2*t^8.805)/y + (g1*g2^3*t^8.805)/y + (g1*g2*t^8.87)/y + (4*g1*t^8.935)/(g2*y) + (4*g2^2*t^8.935)/y - t^4.2*y - g1*g2*t^6.47*y - 2*t^6.6*y + 3*g1*g2*t^7.67*y + 5*t^7.8*y + (t^7.93*y)/(g1*g2) + g1^2*t^8.805*y + g1*g2^3*t^8.805*y + g1*g2*t^8.87*y + (4*g1*t^8.935*y)/g2 + 4*g2^2*t^8.935*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2722 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ 0.6148 0.755 0.8143 [X:[1.6], M:[0.4, 1.2, 0.8, 0.7567], q:[0.8325, 0.7675], qb:[0.4108, 0.3892], phi:[0.4]] t^2.27 + 2*t^2.4 + t^3.47 + 2*t^3.535 + t^3.6 + 2*t^3.665 + t^4.54 + 2*t^4.67 + 4*t^4.8 + t^5.74 + 2*t^5.805 + 2*t^5.87 + 4*t^5.935 - t^6. - t^4.2/y - t^4.2*y detail