Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3237 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_2M_3$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ 0.6334 0.7905 0.8013 [X:[1.6], M:[0.4, 1.2, 0.8, 0.7434, 0.7434], q:[0.8566, 0.7434], qb:[0.4, 0.4], phi:[0.4]] [X:[[0, 0]], M:[[0, 0], [0, 0], [0, 0], [1, 1], [1, -1]], q:[[-1, 0], [1, 0]], qb:[[0, -1], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_4$, $ M_3$, $ \phi_1^2$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_4M_5$, $ M_5^2$, $ M_4^2$, $ M_3M_5$, $ M_5\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_4$, $ M_4\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_3^2$, $ M_3\phi_1^2$, $ \phi_1^4$, $ X_1$, $ \phi_1q_2^2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_5\phi_1\tilde{q}_1^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_4\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_2^2$, $ M_4\phi_1\tilde{q}_2^2$ $M_3\phi_1\tilde{q}_1^2$, $ \phi_1^3\tilde{q}_1^2$, $ M_3\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_1\tilde{q}_2$, $ M_3\phi_1\tilde{q}_2^2$, $ \phi_1^3\tilde{q}_2^2$ 1 2*t^2.23 + 2*t^2.4 + 2*t^3.43 + 3*t^3.6 + 3*t^4.46 + 4*t^4.63 + 4*t^4.8 + 4*t^5.66 + 8*t^5.83 + t^6. - 2*t^6.17 + 4*t^6.69 + 9*t^6.86 + 10*t^7.03 + 3*t^7.2 - 4*t^7.37 + 6*t^7.89 + 13*t^8.06 + 4*t^8.23 - 5*t^8.4 - 6*t^8.57 + 5*t^8.92 - t^4.2/y - (2*t^6.43)/y - t^6.6/y + t^7.46/y + (4*t^7.63)/y + (2*t^7.8)/y + (2*t^7.97)/y + t^8.66/y + (8*t^8.83)/y - t^4.2*y - 2*t^6.43*y - t^6.6*y + t^7.46*y + 4*t^7.63*y + 2*t^7.8*y + 2*t^7.97*y + t^8.66*y + 8*t^8.83*y (g1*t^2.23)/g2 + g1*g2*t^2.23 + 2*t^2.4 + (g1*t^3.43)/g2 + g1*g2*t^3.43 + t^3.6 + t^3.6/g2^2 + g2^2*t^3.6 + g1^2*t^4.46 + (g1^2*t^4.46)/g2^2 + g1^2*g2^2*t^4.46 + (2*g1*t^4.63)/g2 + 2*g1*g2*t^4.63 + 4*t^4.8 + 2*g1^2*t^5.66 + (g1^2*t^5.66)/g2^2 + g1^2*g2^2*t^5.66 + (g1*t^5.83)/g2^3 + (3*g1*t^5.83)/g2 + 3*g1*g2*t^5.83 + g1*g2^3*t^5.83 - t^6. + t^6./g2^2 + g2^2*t^6. - t^6.17/(g1*g2) - (g2*t^6.17)/g1 + (g1^3*t^6.69)/g2^3 + (g1^3*t^6.69)/g2 + g1^3*g2*t^6.69 + g1^3*g2^3*t^6.69 + 3*g1^2*t^6.86 + (3*g1^2*t^6.86)/g2^2 + 3*g1^2*g2^2*t^6.86 + (g1*t^7.03)/g2^3 + (4*g1*t^7.03)/g2 + 4*g1*g2*t^7.03 + g1*g2^3*t^7.03 + 3*t^7.2 + t^7.2/g2^4 - t^7.2/g2^2 - g2^2*t^7.2 + g2^4*t^7.2 - (2*t^7.37)/(g1*g2) - (2*g2*t^7.37)/g1 + (g1^3*t^7.89)/g2^3 + (2*g1^3*t^7.89)/g2 + 2*g1^3*g2*t^7.89 + g1^3*g2^3*t^7.89 + 5*g1^2*t^8.06 + (g1^2*t^8.06)/g2^4 + (3*g1^2*t^8.06)/g2^2 + 3*g1^2*g2^2*t^8.06 + g1^2*g2^4*t^8.06 + (g1*t^8.23)/g2^3 + (g1*t^8.23)/g2 + g1*g2*t^8.23 + g1*g2^3*t^8.23 - 5*t^8.4 - (3*t^8.57)/(g1*g2) - (3*g2*t^8.57)/g1 + g1^4*t^8.92 + (g1^4*t^8.92)/g2^4 + (g1^4*t^8.92)/g2^2 + g1^4*g2^2*t^8.92 + g1^4*g2^4*t^8.92 - t^4.2/y - (g1*t^6.43)/(g2*y) - (g1*g2*t^6.43)/y - t^6.6/y + (g1^2*t^7.46)/y + (2*g1*t^7.63)/(g2*y) + (2*g1*g2*t^7.63)/y + (2*t^7.8)/y + t^7.97/(g1*g2*y) + (g2*t^7.97)/(g1*y) + (g1^2*t^8.66)/y + (g1*t^8.83)/(g2^3*y) + (3*g1*t^8.83)/(g2*y) + (3*g1*g2*t^8.83)/y + (g1*g2^3*t^8.83)/y - t^4.2*y - (g1*t^6.43*y)/g2 - g1*g2*t^6.43*y - t^6.6*y + g1^2*t^7.46*y + (2*g1*t^7.63*y)/g2 + 2*g1*g2*t^7.63*y + 2*t^7.8*y + (t^7.97*y)/(g1*g2) + (g2*t^7.97*y)/g1 + g1^2*t^8.66*y + (g1*t^8.83*y)/g2^3 + (3*g1*t^8.83*y)/g2 + 3*g1*g2*t^8.83*y + g1*g2^3*t^8.83*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3658 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_2M_3$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1^2$ 0.6511 0.823 0.7911 [X:[1.6], M:[0.4, 1.2, 0.8, 0.7249, 0.7625, 0.7625], q:[0.8563, 0.7437], qb:[0.4188, 0.3812], phi:[0.4]] t^2.17 + 2*t^2.29 + 2*t^2.4 + t^3.37 + 2*t^3.49 + t^3.6 + t^4.35 + 2*t^4.46 + 5*t^4.57 + 4*t^4.69 + 4*t^4.8 + t^5.55 + 4*t^5.66 + 6*t^5.77 + 4*t^5.89 - t^6. - t^4.2/y - t^4.2*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2722 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_2M_3$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_4q_1\tilde{q}_1$ 0.6148 0.755 0.8143 [X:[1.6], M:[0.4, 1.2, 0.8, 0.7567], q:[0.8325, 0.7675], qb:[0.4108, 0.3892], phi:[0.4]] t^2.27 + 2*t^2.4 + t^3.47 + 2*t^3.54 + t^3.6 + 2*t^3.66 + t^4.54 + 2*t^4.67 + 4*t^4.8 + t^5.74 + 2*t^5.81 + 2*t^5.87 + 4*t^5.94 - t^6. - t^4.2/y - t^4.2*y detail