Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3221 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ 0.5931 0.7477 0.7932 [M:[1.0, 0.8948, 0.7105, 1.2895], q:[0.7632, 0.2368], qb:[0.5263, 0.5789], phi:[0.4737]] [M:[[0], [-8], [-3], [3]], q:[[1], [-1]], qb:[[2], [6]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{4}$ ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$ -2 t^2.289 + t^2.447 + t^2.684 + 2*t^2.842 + t^3. + t^3.711 + 2*t^3.868 + t^4.026 + 2*t^4.579 + 2*t^4.737 + 2*t^4.895 + 2*t^5.132 + 3*t^5.289 + t^5.369 + t^5.447 + 2*t^5.527 + 4*t^5.684 - 2*t^6. + t^6.158 + 2*t^6.316 + t^6.473 + 2*t^6.553 + 3*t^6.711 + 2*t^6.868 + t^7.026 + 2*t^7.184 + 2*t^7.342 + 2*t^7.421 + 4*t^7.579 + 6*t^7.737 + 2*t^7.895 + 3*t^7.974 + t^8.053 + 3*t^8.132 + 2*t^8.211 - 2*t^8.289 + 4*t^8.369 - 2*t^8.447 + 5*t^8.527 + 2*t^8.605 - 3*t^8.684 + 4*t^8.763 - 7*t^8.842 + 2*t^8.921 - t^4.421/y - t^7.105/y - t^7.263/y + t^7.579/y + (2*t^7.737)/y + t^7.974/y + (3*t^8.132)/y + (3*t^8.289)/y + t^8.447/y + (2*t^8.527)/y + (2*t^8.684)/y + (2*t^8.842)/y - t^4.421*y - t^7.105*y - t^7.263*y + t^7.579*y + 2*t^7.737*y + t^7.974*y + 3*t^8.132*y + 3*t^8.289*y + t^8.447*y + 2*t^8.527*y + 2*t^8.684*y + 2*t^8.842*y g1*t^2.289 + g1^5*t^2.447 + t^2.684/g1^8 + (2*t^2.842)/g1^4 + t^3. + t^3.711/g1 + 2*g1^3*t^3.868 + g1^7*t^4.026 + 2*g1^2*t^4.579 + 2*g1^6*t^4.737 + 2*g1^10*t^4.895 + (2*t^5.132)/g1^3 + 3*g1*t^5.289 + t^5.369/g1^16 + g1^5*t^5.447 + (2*t^5.527)/g1^12 + (4*t^5.684)/g1^8 - 2*t^6. + g1^4*t^6.158 + 2*g1^8*t^6.316 + g1^12*t^6.473 + (2*t^6.553)/g1^5 + (3*t^6.711)/g1 + 2*g1^3*t^6.868 + g1^7*t^7.026 + 2*g1^11*t^7.184 + 2*g1^15*t^7.342 + (2*t^7.421)/g1^2 + 4*g1^2*t^7.579 + 6*g1^6*t^7.737 + 2*g1^10*t^7.895 + (3*t^7.974)/g1^7 + t^8.053/g1^24 + (3*t^8.132)/g1^3 + (2*t^8.211)/g1^20 - 2*g1*t^8.289 + (4*t^8.369)/g1^16 - 2*g1^5*t^8.447 + (5*t^8.527)/g1^12 + 2*g1^9*t^8.605 - (3*t^8.684)/g1^8 + 4*g1^13*t^8.763 - (7*t^8.842)/g1^4 + 2*g1^17*t^8.921 - t^4.421/(g1^2*y) - t^7.105/(g1^10*y) - t^7.263/(g1^6*y) + (g1^2*t^7.579)/y + (2*g1^6*t^7.737)/y + t^7.974/(g1^7*y) + (3*t^8.132)/(g1^3*y) + (3*g1*t^8.289)/y + (g1^5*t^8.447)/y + (2*t^8.527)/(g1^12*y) + (2*t^8.684)/(g1^8*y) + (2*t^8.842)/(g1^4*y) - (t^4.421*y)/g1^2 - (t^7.105*y)/g1^10 - (t^7.263*y)/g1^6 + g1^2*t^7.579*y + 2*g1^6*t^7.737*y + (t^7.974*y)/g1^7 + (3*t^8.132*y)/g1^3 + 3*g1*t^8.289*y + g1^5*t^8.447*y + (2*t^8.527*y)/g1^12 + (2*t^8.684*y)/g1^8 + (2*t^8.842*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3639 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6115 0.781 0.783 [M:[1.0, 0.8992, 0.7122, 1.2878, 0.7626], q:[0.7626, 0.2374], qb:[0.5252, 0.5756], phi:[0.4748]] 2*t^2.288 + t^2.439 + t^2.698 + 2*t^2.849 + t^3. + 2*t^3.863 + t^4.014 + 4*t^4.576 + 3*t^4.727 + 2*t^4.878 + t^4.986 + 4*t^5.137 + 4*t^5.288 + t^5.395 + t^5.439 + 2*t^5.547 + 4*t^5.698 - 3*t^6. - t^4.424/y - t^4.424*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2714 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6134 0.7861 0.7803 [M:[1.0, 0.8885, 0.7082], q:[0.7639, 0.2361], qb:[0.5279, 0.5837], phi:[0.4721]] t^2.125 + t^2.292 + t^2.459 + t^2.665 + 2*t^2.833 + t^3. + t^3.708 + t^3.875 + t^4.043 + t^4.249 + t^4.416 + 3*t^4.584 + 2*t^4.751 + t^4.79 + 2*t^4.918 + 2*t^4.957 + 3*t^5.125 + 3*t^5.292 + t^5.331 + t^5.459 + 2*t^5.498 + 4*t^5.665 + t^5.833 - t^6. - t^4.416/y - t^4.416*y detail