Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
317 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_2M_3$ + $ M_1M_4$ 0.7103 0.8462 0.8394 [X:[], M:[0.8699, 1.1301, 0.8699, 1.1301], q:[0.5651, 0.5651], qb:[0.5651, 0.5651], phi:[0.4349]] [X:[], M:[[-2, -2], [2, 2], [-2, -2], [2, 2]], q:[[0, 2], [2, 0]], qb:[[2, 0], [0, 2]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ q_2\tilde{q}_1$, $ M_2$, $ M_4$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3^2$ $M_3M_4$, $ M_3q_2\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$ -10 t^2.61 + 6*t^3.39 + 10*t^4.7 + t^5.22 - 10*t^6. + 20*t^6.78 - 5*t^7.3 + t^7.83 + 35*t^8.09 - t^4.3/y - t^6.91/y + t^7.7/y - t^4.3*y - t^6.91*y + t^7.7*y t^2.61/(g1^2*g2^2) + g1^4*t^3.39 + 4*g1^2*g2^2*t^3.39 + g2^4*t^3.39 + (3*g1^3*t^4.7)/g2 + 4*g1*g2*t^4.7 + (3*g2^3*t^4.7)/g1 + t^5.22/(g1^4*g2^4) - 4*t^6. - (3*g1^2*t^6.)/g2^2 - (3*g2^2*t^6.)/g1^2 + g1^8*t^6.78 + 4*g1^6*g2^2*t^6.78 + 10*g1^4*g2^4*t^6.78 + 4*g1^2*g2^6*t^6.78 + g2^8*t^6.78 - (g1*t^7.3)/g2^3 - (3*t^7.3)/(g1*g2) - (g2*t^7.3)/g1^3 + t^7.83/(g1^6*g2^6) + (3*g1^7*t^8.09)/g2 + 9*g1^5*g2*t^8.09 + 11*g1^3*g2^3*t^8.09 + 9*g1*g2^5*t^8.09 + (3*g2^7*t^8.09)/g1 - t^4.3/(g1*g2*y) - t^6.91/(g1^3*g2^3*y) + (g1*g2*t^7.7)/y - (t^4.3*y)/(g1*g2) - (t^6.91*y)/(g1^3*g2^3) + g1*g2*t^7.7*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
495 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_2M_3$ + $ M_1M_4$ + $ M_3M_5$ 0.7003 0.8367 0.837 [X:[], M:[0.9093, 1.0907, 0.9093, 1.0907, 1.0907], q:[0.5454, 0.5454], qb:[0.5454, 0.5454], phi:[0.4546]] 7*t^3.27 + 10*t^4.64 - 16*t^6. - t^4.36/y - t^4.36*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55448 SU2adj1nf3 $\phi_1q_1q_2$ + $ q_2q_3$ 0.7103 0.8462 0.8394 [X:[], M:[], q:[0.5651, 1.0, 1.0], qb:[0.5651, 0.5651, 0.5651], phi:[0.4349]] t^2.61 + 6*t^3.39 + 10*t^4.7 + t^5.22 - 10*t^6. - t^4.3/y - t^4.3*y detail


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
201 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_2M_3$ 0.7232 0.8641 0.8369 [X:[], M:[0.837, 1.163, 0.837], q:[0.5815, 0.5815], qb:[0.5815, 0.5815], phi:[0.4185]] 2*t^2.51 + 5*t^3.49 + 10*t^4.74 + 3*t^5.02 - 6*t^6. - t^4.26/y - t^4.26*y detail