Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3121 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ q_1q_2\tilde{q}_2^2$ + $ M_7q_1\tilde{q}_2$ | 0.6486 | 0.8552 | 0.7584 | [X:[], M:[0.9749, 1.0753, 1.0251, 0.9247, 0.7688, 0.7186, 0.7688], q:[0.7437, 0.2814], qb:[0.4373, 0.4875], phi:[0.5125]] | [X:[], M:[[4], [-12], [-4], [12], [-3], [5], [-3]], q:[[1], [-5]], qb:[[10], [2]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ q_2\tilde{q}_1$, $ M_5$, $ M_7$, $ q_2\tilde{q}_2$, $ M_4$, $ M_3$, $ \phi_1^2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5M_6$, $ M_6M_7$, $ M_5q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5M_7$, $ M_7^2$, $ \phi_1q_1q_2$, $ M_5q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4M_6$, $ M_4q_2\tilde{q}_1$, $ M_4M_5$, $ M_4M_7$, $ \phi_1q_1\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3M_5$, $ M_3M_7$, $ M_5\phi_1^2$, $ M_7\phi_1^2$, $ M_6\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_5\phi_1q_2^2$, $ M_7\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_4^2$, $ M_6q_1\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ M_7q_1\tilde{q}_1$ | $M_4\phi_1q_2^2$ | -3 | 2*t^2.16 + 3*t^2.31 + t^2.77 + 2*t^3.08 + t^3.23 + t^3.54 + t^4.16 + 4*t^4.31 + 7*t^4.46 + 6*t^4.61 + 2*t^4.93 + 3*t^5.08 + 4*t^5.23 + 7*t^5.38 + 2*t^5.53 + t^5.55 + 2*t^5.7 + 3*t^5.85 - 3*t^6. + 2*t^6.3 + 3*t^6.32 + t^6.45 + 7*t^6.47 + 12*t^6.62 + 12*t^6.77 + 7*t^6.92 + t^6.94 - t^7.07 + 4*t^7.09 + 7*t^7.24 + 9*t^7.39 + 11*t^7.54 + 12*t^7.69 + 3*t^7.7 + 3*t^7.84 + 6*t^7.85 + 3*t^8.01 - 4*t^8.16 - 10*t^8.31 + 2*t^8.32 + 2*t^8.46 + 6*t^8.47 + 5*t^8.61 + 14*t^8.62 + 2*t^8.76 + 15*t^8.77 + 16*t^8.92 - t^4.54/y - t^6.69/y - (2*t^6.84)/y + t^7.31/y + (7*t^7.46)/y + (2*t^7.61)/y + (2*t^7.93)/y + (3*t^8.08)/y + (6*t^8.23)/y + (9*t^8.38)/y + (3*t^8.53)/y + (2*t^8.7)/y + (4*t^8.85)/y - t^4.54*y - t^6.69*y - 2*t^6.84*y + t^7.31*y + 7*t^7.46*y + 2*t^7.61*y + 2*t^7.93*y + 3*t^8.08*y + 6*t^8.23*y + 9*t^8.38*y + 3*t^8.53*y + 2*t^8.7*y + 4*t^8.85*y | 2*g1^5*t^2.16 + (3*t^2.31)/g1^3 + g1^12*t^2.77 + (2*t^3.08)/g1^4 + t^3.23/g1^12 + g1^11*t^3.54 + g1^18*t^4.16 + 4*g1^10*t^4.31 + 7*g1^2*t^4.46 + (6*t^4.61)/g1^6 + 2*g1^17*t^4.93 + 3*g1^9*t^5.08 + 4*g1*t^5.23 + (7*t^5.38)/g1^7 + (2*t^5.53)/g1^15 + g1^24*t^5.55 + 2*g1^16*t^5.7 + 3*g1^8*t^5.85 - 3*t^6. + (2*t^6.3)/g1^16 + 3*g1^23*t^6.32 + t^6.45/g1^24 + 7*g1^15*t^6.47 + 12*g1^7*t^6.62 + (12*t^6.77)/g1 + (7*t^6.92)/g1^9 + g1^30*t^6.94 - t^7.07/g1^17 + 4*g1^22*t^7.09 + 7*g1^14*t^7.24 + 9*g1^6*t^7.39 + (11*t^7.54)/g1^2 + (12*t^7.69)/g1^10 + 3*g1^29*t^7.7 + (3*t^7.84)/g1^18 + 6*g1^21*t^7.85 + 3*g1^13*t^8.01 - 4*g1^5*t^8.16 - (10*t^8.31)/g1^3 + 2*g1^36*t^8.32 + (2*t^8.46)/g1^11 + 6*g1^28*t^8.47 + (5*t^8.61)/g1^19 + 14*g1^20*t^8.62 + (2*t^8.76)/g1^27 + 15*g1^12*t^8.77 + 16*g1^4*t^8.92 - t^4.54/(g1^2*y) - (g1^3*t^6.69)/y - (2*t^6.84)/(g1^5*y) + (g1^10*t^7.31)/y + (7*g1^2*t^7.46)/y + (2*t^7.61)/(g1^6*y) + (2*g1^17*t^7.93)/y + (3*g1^9*t^8.08)/y + (6*g1*t^8.23)/y + (9*t^8.38)/(g1^7*y) + (3*t^8.53)/(g1^15*y) + (2*g1^16*t^8.7)/y + (4*g1^8*t^8.85)/y - (t^4.54*y)/g1^2 - g1^3*t^6.69*y - (2*t^6.84*y)/g1^5 + g1^10*t^7.31*y + 7*g1^2*t^7.46*y + (2*t^7.61*y)/g1^6 + 2*g1^17*t^7.93*y + 3*g1^9*t^8.08*y + 6*g1*t^8.23*y + (9*t^8.38*y)/g1^7 + (3*t^8.53*y)/g1^15 + 2*g1^16*t^8.7*y + 4*g1^8*t^8.85*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2046 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ q_1q_2\tilde{q}_2^2$ | 0.6304 | 0.823 | 0.766 | [X:[], M:[0.9729, 1.0814, 1.0271, 0.9186, 0.7704, 0.7161], q:[0.7432, 0.2839], qb:[0.4322, 0.4864], phi:[0.5136]] | 2*t^2.15 + 2*t^2.31 + t^2.76 + 2*t^3.08 + t^3.24 + t^3.53 + t^3.69 + t^4.13 + 4*t^4.3 + 5*t^4.46 + 3*t^4.62 + 2*t^4.9 + 2*t^5.07 + 4*t^5.23 + 5*t^5.39 + t^5.51 + t^5.56 + 2*t^5.67 + 4*t^5.84 - t^6. - t^4.54/y - t^4.54*y | detail |