Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3109 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_1$ + $ M_7q_1\tilde{q}_2$ 0.6326 0.8392 0.7538 [X:[], M:[0.9236, 1.2291, 0.9236, 0.7709, 0.7709, 0.9236, 0.8436], q:[0.7309, 0.3454], qb:[0.3454, 0.4255], phi:[0.5382]] [X:[], M:[[4], [-12], [4], [12], [12], [4], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ M_4$, $ M_5$, $ q_2\tilde{q}_2$, $ M_7$, $ M_1$, $ M_3$, $ M_6$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_7q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4M_7$, $ M_5M_7$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ M_7^2$, $ M_1M_4$, $ M_3M_4$, $ M_1M_5$, $ M_3M_5$, $ M_4M_6$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ M_1M_7$, $ M_3M_7$, $ M_6M_7$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_1M_6$, $ M_3M_6$, $ M_6^2$ $M_4\phi_1q_2^2$, $ M_4\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1^2$, $ \phi_1q_2^3\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1^2\tilde{q}_2$ 1 t^2.07 + 3*t^2.31 + t^2.53 + 3*t^2.77 + 2*t^3.69 + 2*t^3.93 + t^4.15 + t^4.17 + 3*t^4.39 + t^4.6 + 6*t^4.63 + 6*t^4.84 + t^5.06 + 9*t^5.08 + 3*t^5.3 + 5*t^5.54 + t^6. + 3*t^6.22 + 4*t^6.24 + 6*t^6.46 + 3*t^6.48 + t^6.68 + 10*t^6.7 + 3*t^6.92 + 12*t^6.94 + t^7.13 + 9*t^7.16 + 6*t^7.37 + 16*t^7.4 + t^7.59 + 10*t^7.61 + 3*t^7.83 + 14*t^7.85 + 2*t^8.09 + t^8.29 + 2*t^8.31 + t^8.33 - t^8.53 + 6*t^8.55 + 3*t^8.75 - 3*t^8.77 + 6*t^8.79 + 7*t^8.99 - t^4.61/y - t^6.93/y - t^7.15/y + t^7.39/y + t^7.6/y + (3*t^7.63)/y + (8*t^7.84)/y + (10*t^8.08)/y + (4*t^8.3)/y + (3*t^8.54)/y + (2*t^8.76)/y - t^4.61*y - t^6.93*y - t^7.15*y + t^7.39*y + t^7.6*y + 3*t^7.63*y + 8*t^7.84*y + 10*t^8.08*y + 4*t^8.3*y + 3*t^8.54*y + 2*t^8.76*y t^2.07/g1^10 + 3*g1^12*t^2.31 + t^2.53/g1^18 + 3*g1^4*t^2.77 + (2*t^3.69)/g1^12 + 2*g1^10*t^3.93 + t^4.15/g1^20 + g1^32*t^4.17 + 3*g1^2*t^4.39 + t^4.6/g1^28 + 6*g1^24*t^4.63 + (6*t^4.84)/g1^6 + t^5.06/g1^36 + 9*g1^16*t^5.08 + (3*t^5.3)/g1^14 + 5*g1^8*t^5.54 + t^6. + (3*t^6.22)/g1^30 + 4*g1^22*t^6.24 + (6*t^6.46)/g1^8 + 3*g1^44*t^6.48 + t^6.68/g1^38 + 10*g1^14*t^6.7 + (3*t^6.92)/g1^16 + 12*g1^36*t^6.94 + t^7.13/g1^46 + 9*g1^6*t^7.16 + (6*t^7.37)/g1^24 + 16*g1^28*t^7.4 + t^7.59/g1^54 + (10*t^7.61)/g1^2 + (3*t^7.83)/g1^32 + 14*g1^20*t^7.85 + 2*g1^42*t^8.09 + t^8.29/g1^40 + 2*g1^12*t^8.31 + g1^64*t^8.33 - t^8.53/g1^18 + 6*g1^34*t^8.55 + (3*t^8.75)/g1^48 - 3*g1^4*t^8.77 + 6*g1^56*t^8.79 + (7*t^8.99)/g1^26 - t^4.61/(g1^2*y) - (g1^10*t^6.93)/y - t^7.15/(g1^20*y) + (g1^2*t^7.39)/y + t^7.6/(g1^28*y) + (3*g1^24*t^7.63)/y + (8*t^7.84)/(g1^6*y) + (10*g1^16*t^8.08)/y + (4*t^8.3)/(g1^14*y) + (3*g1^8*t^8.54)/y + (2*t^8.76)/(g1^22*y) - (t^4.61*y)/g1^2 - g1^10*t^6.93*y - (t^7.15*y)/g1^20 + g1^2*t^7.39*y + (t^7.6*y)/g1^28 + 3*g1^24*t^7.63*y + (8*t^7.84*y)/g1^6 + 10*g1^16*t^8.08*y + (4*t^8.3*y)/g1^14 + 3*g1^8*t^8.54*y + (2*t^8.76*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2039 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_1$ 0.6201 0.8206 0.7557 [X:[], M:[0.9167, 1.2499, 0.9167, 0.7501, 0.7501, 0.9167], q:[0.7292, 0.3541], qb:[0.3541, 0.396], phi:[0.5416]] t^2.12 + 3*t^2.25 + 3*t^2.75 + t^3.38 + 2*t^3.75 + 2*t^3.88 + t^4. + t^4.25 + 3*t^4.38 + 6*t^4.5 + 3*t^4.87 + 9*t^5. + 6*t^5.5 + 3*t^5.63 + t^6. - t^4.62/y - t^4.62*y detail