Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3098 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ + ${ }M_{7}q_{2}\tilde{q}_{2}$ 0.6657 0.8388 0.7937 [X:[1.5769], M:[0.4231, 1.1923, 0.7885, 0.8461, 0.8077, 0.7692, 0.8461], q:[0.7981, 0.7789], qb:[0.4327, 0.375], phi:[0.4038]] [X:[[12]], M:[[-12], [4], [6], [-24], [-4], [16], [-24]], q:[[1], [11]], qb:[[-17], [13]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{3}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{7}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }M_{5}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ -3 t^2.308 + t^2.365 + 2*t^2.423 + 2*t^2.538 + t^3.519 + t^3.635 + t^3.808 + t^4.615 + 2*t^4.673 + 4*t^4.731 + t^4.788 + 6*t^4.846 + 2*t^4.904 + 3*t^4.961 + 3*t^5.077 + 2*t^5.885 + 2*t^5.942 - 3*t^6. + 3*t^6.058 + t^6.173 + 2*t^6.231 + 2*t^6.346 + t^6.923 + 2*t^6.981 + 3*t^7.039 + 3*t^7.096 + 7*t^7.154 + 2*t^7.212 + 11*t^7.269 + 2*t^7.327 + 7*t^7.385 + 4*t^7.442 + 4*t^7.5 + 5*t^7.615 + t^8.192 + t^8.25 - 3*t^8.308 - 5*t^8.423 + 4*t^8.481 - 6*t^8.538 + 2*t^8.596 + 4*t^8.654 + t^8.711 + 3*t^8.769 + 3*t^8.884 - t^4.212/y - t^6.519/y - t^6.577/y - t^6.635/y - (2*t^6.75)/y + (3*t^7.673)/y + (2*t^7.731)/y + (3*t^7.788)/y + (4*t^7.846)/y + (3*t^7.904)/y + (4*t^7.961)/y + t^8.077/y + t^8.942/y - t^4.212*y - t^6.519*y - t^6.577*y - t^6.635*y - 2*t^6.75*y + 3*t^7.673*y + 2*t^7.731*y + 3*t^7.788*y + 4*t^7.846*y + 3*t^7.904*y + 4*t^7.961*y + t^8.077*y + t^8.942*y g1^16*t^2.308 + g1^6*t^2.365 + (2*t^2.423)/g1^4 + (2*t^2.538)/g1^24 + g1^14*t^3.519 + t^3.635/g1^6 + t^3.808/g1^36 + g1^32*t^4.615 + 2*g1^22*t^4.673 + 4*g1^12*t^4.731 + g1^2*t^4.788 + (6*t^4.846)/g1^8 + (2*t^4.904)/g1^18 + (3*t^4.961)/g1^28 + (3*t^5.077)/g1^48 + 2*g1^20*t^5.885 + 2*g1^10*t^5.942 - 3*t^6. + (3*t^6.058)/g1^10 + t^6.173/g1^30 + (2*t^6.231)/g1^40 + (2*t^6.346)/g1^60 + g1^48*t^6.923 + 2*g1^38*t^6.981 + 3*g1^28*t^7.039 + 3*g1^18*t^7.096 + 7*g1^8*t^7.154 + (2*t^7.212)/g1^2 + (11*t^7.269)/g1^12 + (2*t^7.327)/g1^22 + (7*t^7.385)/g1^32 + (4*t^7.442)/g1^42 + (4*t^7.5)/g1^52 + (5*t^7.615)/g1^72 + g1^36*t^8.192 + g1^26*t^8.25 - 3*g1^16*t^8.308 - (5*t^8.423)/g1^4 + (4*t^8.481)/g1^14 - (6*t^8.538)/g1^24 + (2*t^8.596)/g1^34 + (4*t^8.654)/g1^44 + t^8.711/g1^54 + (3*t^8.769)/g1^64 + (3*t^8.884)/g1^84 - t^4.212/(g1^2*y) - (g1^14*t^6.519)/y - (g1^4*t^6.577)/y - t^6.635/(g1^6*y) - (2*t^6.75)/(g1^26*y) + (3*g1^22*t^7.673)/y + (2*g1^12*t^7.731)/y + (3*g1^2*t^7.788)/y + (4*t^7.846)/(g1^8*y) + (3*t^7.904)/(g1^18*y) + (4*t^7.961)/(g1^28*y) + t^8.077/(g1^48*y) + (g1^10*t^8.942)/y - (t^4.212*y)/g1^2 - g1^14*t^6.519*y - g1^4*t^6.577*y - (t^6.635*y)/g1^6 - (2*t^6.75*y)/g1^26 + 3*g1^22*t^7.673*y + 2*g1^12*t^7.731*y + 3*g1^2*t^7.788*y + (4*t^7.846*y)/g1^8 + (3*t^7.904*y)/g1^18 + (4*t^7.961*y)/g1^28 + (t^8.077*y)/g1^48 + g1^10*t^8.942*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2031 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ 0.6535 0.8177 0.7992 [X:[1.5601], M:[0.4399, 1.1867, 0.78, 0.8799, 0.8133, 0.7468], q:[0.7967, 0.7634], qb:[0.4566, 0.3567], phi:[0.4067]] t^2.24 + t^2.34 + 2*t^2.44 + t^2.64 + t^3.36 + t^3.46 + t^3.66 + t^3.959 + t^4.481 + 2*t^4.58 + 4*t^4.68 + t^4.78 + 5*t^4.88 + t^4.98 + t^5.079 + t^5.279 + t^5.601 + t^5.701 + 4*t^5.8 + 2*t^5.9 - 2*t^6. - t^4.22/y - t^4.22*y detail