Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3090 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ + $ M_8q_1\tilde{q}_2$ | 0.6708 | 0.8928 | 0.7514 | [X:[], M:[0.9658, 1.1027, 0.9658, 0.8973, 0.7414, 0.7414, 0.8099, 0.8099], q:[0.7414, 0.2928], qb:[0.4486, 0.4486], phi:[0.5171]] | [X:[], M:[[4, 4], [-12, -12], [4, 4], [12, 12], [-5, 7], [7, -5], [-13, -1], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ q_2\tilde{q}_1$, $ M_5$, $ q_2\tilde{q}_2$, $ M_8$, $ M_7$, $ M_4$, $ M_1$, $ M_3$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_5M_6$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_6M_8$, $ M_8q_2\tilde{q}_1$, $ M_6M_7$, $ M_5M_8$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_2$, $ M_5M_7$, $ M_7q_2\tilde{q}_2$, $ M_8^2$, $ M_7M_8$, $ M_7^2$, $ M_4M_6$, $ M_4q_2\tilde{q}_1$, $ M_4M_5$, $ M_4q_2\tilde{q}_2$, $ M_1M_6$, $ M_3M_6$, $ M_4M_8$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_1M_5$, $ M_3M_5$, $ M_4M_7$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1M_8$, $ M_3M_8$, $ M_1M_7$, $ M_3M_7$, $ M_4^2$, $ M_6\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_5\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_1M_4$, $ M_3M_4$, $ M_8\phi_1q_2^2$, $ M_7\phi_1q_2^2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$ | $M_4\phi_1q_2^2$ | -5 | 4*t^2.22 + 2*t^2.43 + t^2.69 + 2*t^2.9 + t^3.31 + 3*t^4.24 + 10*t^4.45 + 8*t^4.65 + 3*t^4.86 + 4*t^4.92 + 10*t^5.12 + 4*t^5.33 + t^5.38 + 2*t^5.53 + 2*t^5.59 + 2*t^5.74 + 2*t^5.79 - 5*t^6. + 8*t^6.47 + t^6.62 + 22*t^6.67 + 16*t^6.88 + 3*t^6.94 + 10*t^7.08 + 13*t^7.14 + 4*t^7.29 + 23*t^7.35 + 14*t^7.55 + 4*t^7.61 + 8*t^7.76 + 8*t^7.81 + 4*t^7.96 + 6*t^8.02 + t^8.08 + 3*t^8.17 - 18*t^8.22 + 2*t^8.28 - 14*t^8.43 + 7*t^8.49 + 11*t^8.69 + 2*t^8.84 + 24*t^8.9 - t^4.55/y - (2*t^6.78)/y - (2*t^6.98)/y + (5*t^7.45)/y + (9*t^7.65)/y + t^7.86/y + (4*t^7.92)/y + (12*t^8.12)/y + (6*t^8.33)/y + (4*t^8.53)/y + (2*t^8.59)/y + (2*t^8.74)/y + t^8.79/y - t^4.55*y - 2*t^6.78*y - 2*t^6.98*y + 5*t^7.45*y + 9*t^7.65*y + t^7.86*y + 4*t^7.92*y + 12*t^8.12*y + 6*t^8.33*y + 4*t^8.53*y + 2*t^8.59*y + 2*t^8.74*y + t^8.79*y | (2*g1^7*t^2.22)/g2^5 + (2*g2^7*t^2.22)/g1^5 + t^2.43/(g1*g2^13) + t^2.43/(g1^13*g2) + g1^12*g2^12*t^2.69 + 2*g1^4*g2^4*t^2.9 + t^3.31/(g1^12*g2^12) + (g1^22*t^4.24)/g2^2 + g1^10*g2^10*t^4.24 + (g2^22*t^4.24)/g1^2 + (3*g1^14*t^4.45)/g2^10 + 4*g1^2*g2^2*t^4.45 + (3*g2^14*t^4.45)/g1^10 + (2*g1^6*t^4.65)/g2^18 + (4*t^4.65)/(g1^6*g2^6) + (2*g2^6*t^4.65)/g1^18 + t^4.86/(g1^2*g2^26) + t^4.86/(g1^14*g2^14) + t^4.86/(g1^26*g2^2) + 2*g1^19*g2^7*t^4.92 + 2*g1^7*g2^19*t^4.92 + (5*g1^11*t^5.12)/g2 + (5*g2^11*t^5.12)/g1 + (2*g1^3*t^5.33)/g2^9 + (2*g2^3*t^5.33)/g1^9 + g1^24*g2^24*t^5.38 + t^5.53/(g1^5*g2^17) + t^5.53/(g1^17*g2^5) + 2*g1^16*g2^16*t^5.59 + t^5.74/(g1^13*g2^25) + t^5.74/(g1^25*g2^13) + 2*g1^8*g2^8*t^5.79 - 3*t^6. - (g1^12*t^6.)/g2^12 - (g2^12*t^6.)/g1^12 + (2*g1^29*t^6.47)/g2^7 + 2*g1^17*g2^5*t^6.47 + 2*g1^5*g2^17*t^6.47 + (2*g2^29*t^6.47)/g1^7 + t^6.62/(g1^24*g2^24) + (5*g1^21*t^6.67)/g2^15 + (6*g1^9*t^6.67)/g2^3 + (6*g2^9*t^6.67)/g1^3 + (5*g2^21*t^6.67)/g1^15 + (3*g1^13*t^6.88)/g2^23 + (5*g1*t^6.88)/g2^11 + (5*g2*t^6.88)/g1^11 + (3*g2^13*t^6.88)/g1^23 + g1^34*g2^10*t^6.94 + g1^22*g2^22*t^6.94 + g1^10*g2^34*t^6.94 + (2*g1^5*t^7.08)/g2^31 + (3*t^7.08)/(g1^7*g2^19) + (3*t^7.08)/(g1^19*g2^7) + (2*g2^5*t^7.08)/g1^31 + 4*g1^26*g2^2*t^7.14 + 5*g1^14*g2^14*t^7.14 + 4*g1^2*g2^26*t^7.14 + t^7.29/(g1^3*g2^39) + t^7.29/(g1^15*g2^27) + t^7.29/(g1^27*g2^15) + t^7.29/(g1^39*g2^3) + (7*g1^18*t^7.35)/g2^6 + 9*g1^6*g2^6*t^7.35 + (7*g2^18*t^7.35)/g1^6 + (4*g1^10*t^7.55)/g2^14 + (6*t^7.55)/(g1^2*g2^2) + (4*g2^10*t^7.55)/g1^14 + 2*g1^31*g2^19*t^7.61 + 2*g1^19*g2^31*t^7.61 + (3*g1^2*t^7.76)/g2^22 + (2*t^7.76)/(g1^10*g2^10) + (3*g2^2*t^7.76)/g1^22 + 4*g1^23*g2^11*t^7.81 + 4*g1^11*g2^23*t^7.81 + t^7.96/(g1^6*g2^30) + (2*t^7.96)/(g1^18*g2^18) + t^7.96/(g1^30*g2^6) + 3*g1^15*g2^3*t^8.02 + 3*g1^3*g2^15*t^8.02 + g1^36*g2^36*t^8.08 + t^8.17/(g1^14*g2^38) + t^8.17/(g1^26*g2^26) + t^8.17/(g1^38*g2^14) - (2*g1^19*t^8.22)/g2^17 - (7*g1^7*t^8.22)/g2^5 - (7*g2^7*t^8.22)/g1^5 - (2*g2^19*t^8.22)/g1^17 + 2*g1^28*g2^28*t^8.28 - (g1^11*t^8.43)/g2^25 - (6*t^8.43)/(g1*g2^13) - (6*t^8.43)/(g1^13*g2) - (g2^11*t^8.43)/g1^25 + (g1^44*t^8.49)/g2^4 + g1^32*g2^8*t^8.49 + 3*g1^20*g2^20*t^8.49 + g1^8*g2^32*t^8.49 + (g2^44*t^8.49)/g1^4 + 2*g1^24*t^8.69 + (3*g1^36*t^8.69)/g2^12 + g1^12*g2^12*t^8.69 + 2*g2^24*t^8.69 + (3*g2^36*t^8.69)/g1^12 + t^8.84/(g1^17*g2^29) + t^8.84/(g1^29*g2^17) + (7*g1^28*t^8.9)/g2^20 + (6*g1^16*t^8.9)/g2^8 - 2*g1^4*g2^4*t^8.9 + (6*g2^16*t^8.9)/g1^8 + (7*g2^28*t^8.9)/g1^20 - t^4.55/(g1^2*g2^2*y) - (g1^5*t^6.78)/(g2^7*y) - (g2^5*t^6.78)/(g1^7*y) - t^6.98/(g1^3*g2^15*y) - t^6.98/(g1^15*g2^3*y) + (g1^14*t^7.45)/(g2^10*y) + (3*g1^2*g2^2*t^7.45)/y + (g2^14*t^7.45)/(g1^10*y) + (2*g1^6*t^7.65)/(g2^18*y) + (5*t^7.65)/(g1^6*g2^6*y) + (2*g2^6*t^7.65)/(g1^18*y) + t^7.86/(g1^14*g2^14*y) + (2*g1^19*g2^7*t^7.92)/y + (2*g1^7*g2^19*t^7.92)/y + (6*g1^11*t^8.12)/(g2*y) + (6*g2^11*t^8.12)/(g1*y) + (3*g1^3*t^8.33)/(g2^9*y) + (3*g2^3*t^8.33)/(g1^9*y) + (2*t^8.53)/(g1^5*g2^17*y) + (2*t^8.53)/(g1^17*g2^5*y) + (2*g1^16*g2^16*t^8.59)/y + t^8.74/(g1^13*g2^25*y) + t^8.74/(g1^25*g2^13*y) + (g1^8*g2^8*t^8.79)/y - (t^4.55*y)/(g1^2*g2^2) - (g1^5*t^6.78*y)/g2^7 - (g2^5*t^6.78*y)/g1^7 - (t^6.98*y)/(g1^3*g2^15) - (t^6.98*y)/(g1^15*g2^3) + (g1^14*t^7.45*y)/g2^10 + 3*g1^2*g2^2*t^7.45*y + (g2^14*t^7.45*y)/g1^10 + (2*g1^6*t^7.65*y)/g2^18 + (5*t^7.65*y)/(g1^6*g2^6) + (2*g2^6*t^7.65*y)/g1^18 + (t^7.86*y)/(g1^14*g2^14) + 2*g1^19*g2^7*t^7.92*y + 2*g1^7*g2^19*t^7.92*y + (6*g1^11*t^8.12*y)/g2 + (6*g2^11*t^8.12*y)/g1 + (3*g1^3*t^8.33*y)/g2^9 + (3*g2^3*t^8.33*y)/g1^9 + (2*t^8.53*y)/(g1^5*g2^17) + (2*t^8.53*y)/(g1^17*g2^5) + 2*g1^16*g2^16*t^8.59*y + (t^8.74*y)/(g1^13*g2^25) + (t^8.74*y)/(g1^25*g2^13) + g1^8*g2^8*t^8.79*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2024 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ | 0.6559 | 0.8685 | 0.7552 | [X:[], M:[0.9574, 1.1279, 0.9574, 0.8721, 0.7258, 0.7529, 0.811], q:[0.7393, 0.3033], qb:[0.4496, 0.4225], phi:[0.5213]] | 2*t^2.18 + 2*t^2.26 + t^2.43 + t^2.62 + 2*t^2.87 + t^3.38 + t^3.49 + t^4.1 + t^4.18 + t^4.26 + 3*t^4.35 + 4*t^4.44 + 3*t^4.52 + 2*t^4.61 + 2*t^4.69 + 2*t^4.79 + t^4.87 + 2*t^4.88 + 5*t^5.05 + 4*t^5.13 + t^5.23 + 2*t^5.31 + 2*t^5.49 + t^5.56 + t^5.64 + 2*t^5.66 + 4*t^5.74 + t^5.82 - 3*t^6. - t^4.56/y - t^4.56*y | detail |