Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3087 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ + $ M_7q_1\tilde{q}_1$ | 0.6542 | 0.8667 | 0.7548 | [X:[], M:[0.9647, 1.1058, 0.9647, 0.8942, 0.7059, 0.7765, 0.7765], q:[0.7412, 0.2941], qb:[0.4824, 0.4118], phi:[0.5176]] | [X:[], M:[[4], [-12], [4], [12], [5], [-3], [-3]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ q_2\tilde{q}_2$, $ M_6$, $ M_7$, $ q_2\tilde{q}_1$, $ M_4$, $ M_1$, $ M_3$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5M_6$, $ M_5M_7$, $ M_5q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_6q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ M_6M_7$, $ M_7^2$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_4M_5$, $ M_4q_2\tilde{q}_2$, $ M_1M_5$, $ M_3M_5$, $ M_4M_6$, $ M_4M_7$, $ M_4q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1M_6$, $ M_3M_6$, $ M_1M_7$, $ M_3M_7$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_4^2$, $ M_5\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_1M_4$, $ M_3M_4$, $ M_5q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_6\phi_1q_2^2$, $ M_7\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_6q_1\tilde{q}_2$, $ M_7q_1\tilde{q}_2$ | $M_4\phi_1q_2^2$ | -3 | 2*t^2.12 + 3*t^2.33 + t^2.68 + 2*t^2.89 + t^3.32 + t^3.46 + t^4.02 + 4*t^4.24 + 7*t^4.45 + 6*t^4.66 + 2*t^4.8 + 7*t^5.01 + 6*t^5.22 + t^5.36 + t^5.44 + 4*t^5.58 + 2*t^5.65 + 4*t^5.79 - 3*t^6. + 3*t^6.14 - t^6.21 + 9*t^6.35 + 10*t^6.56 + t^6.64 + t^6.71 + 12*t^6.78 + 6*t^6.92 + 7*t^6.99 + 13*t^7.13 - t^7.2 + 15*t^7.34 + 3*t^7.48 + 9*t^7.55 + 10*t^7.69 + 11*t^7.91 + 3*t^7.98 + 2*t^8.05 - t^8.12 + 8*t^8.26 - 14*t^8.33 + 19*t^8.47 - 5*t^8.54 + 17*t^8.68 + t^8.75 + 3*t^8.82 + 5*t^8.89 + 2*t^8.96 - t^4.55/y - t^6.67/y - (2*t^6.88)/y + t^7.24/y + (5*t^7.45)/y + (4*t^7.66)/y + (2*t^7.8)/y + (7*t^8.01)/y + (8*t^8.22)/y + (3*t^8.44)/y + (4*t^8.58)/y + (3*t^8.65)/y + (3*t^8.79)/y - t^4.55*y - t^6.67*y - 2*t^6.88*y + t^7.24*y + 5*t^7.45*y + 4*t^7.66*y + 2*t^7.8*y + 7*t^8.01*y + 8*t^8.22*y + 3*t^8.44*y + 4*t^8.58*y + 3*t^8.65*y + 3*t^8.79*y | 2*g1^5*t^2.12 + (3*t^2.33)/g1^3 + g1^12*t^2.68 + 2*g1^4*t^2.89 + t^3.32/g1^12 + g1^11*t^3.46 + g1^18*t^4.02 + 4*g1^10*t^4.24 + 7*g1^2*t^4.45 + (6*t^4.66)/g1^6 + 2*g1^17*t^4.8 + 7*g1^9*t^5.01 + 6*g1*t^5.22 + g1^24*t^5.36 + t^5.44/g1^7 + 4*g1^16*t^5.58 + (2*t^5.65)/g1^15 + 4*g1^8*t^5.79 - 3*t^6. + 3*g1^23*t^6.14 - t^6.21/g1^8 + 9*g1^15*t^6.35 + 10*g1^7*t^6.56 + t^6.64/g1^24 + g1^30*t^6.71 + (12*t^6.78)/g1 + 6*g1^22*t^6.92 + (7*t^6.99)/g1^9 + 13*g1^14*t^7.13 - t^7.2/g1^17 + 15*g1^6*t^7.34 + 3*g1^29*t^7.48 + (9*t^7.55)/g1^2 + 10*g1^21*t^7.69 + 11*g1^13*t^7.91 + (3*t^7.98)/g1^18 + 2*g1^36*t^8.05 - g1^5*t^8.12 + 8*g1^28*t^8.26 - (14*t^8.33)/g1^3 + 19*g1^20*t^8.47 - (5*t^8.54)/g1^11 + 17*g1^12*t^8.68 + t^8.75/g1^19 + 3*g1^35*t^8.82 + 5*g1^4*t^8.89 + (2*t^8.96)/g1^27 - t^4.55/(g1^2*y) - (g1^3*t^6.67)/y - (2*t^6.88)/(g1^5*y) + (g1^10*t^7.24)/y + (5*g1^2*t^7.45)/y + (4*t^7.66)/(g1^6*y) + (2*g1^17*t^7.8)/y + (7*g1^9*t^8.01)/y + (8*g1*t^8.22)/y + (3*t^8.44)/(g1^7*y) + (4*g1^16*t^8.58)/y + (3*t^8.65)/(g1^15*y) + (3*g1^8*t^8.79)/y - (t^4.55*y)/g1^2 - g1^3*t^6.67*y - (2*t^6.88*y)/g1^5 + g1^10*t^7.24*y + 5*g1^2*t^7.45*y + (4*t^7.66*y)/g1^6 + 2*g1^17*t^7.8*y + 7*g1^9*t^8.01*y + 8*g1*t^8.22*y + (3*t^8.44*y)/g1^7 + 4*g1^16*t^8.58*y + (3*t^8.65*y)/g1^15 + 3*g1^8*t^8.79*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2023 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ | 0.6365 | 0.8356 | 0.7616 | [X:[], M:[0.9626, 1.1121, 0.9626, 0.8879, 0.7033, 0.778], q:[0.7407, 0.2967], qb:[0.4813, 0.4065], phi:[0.5187]] | 2*t^2.11 + 2*t^2.33 + t^2.66 + 2*t^2.89 + t^3.34 + t^3.44 + t^3.67 + t^4. + 4*t^4.22 + 5*t^4.44 + 3*t^4.67 + 2*t^4.77 + 6*t^5. + 4*t^5.22 + t^5.33 + t^5.45 + 4*t^5.55 + t^5.67 + 5*t^5.78 - t^6. - t^4.56/y - t^4.56*y | detail |