Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3071 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_1M_7$ + $ M_5M_8$ + $ \phi_1\tilde{q}_1^2$ + $ M_3^2$ | 0.6248 | 0.8112 | 0.7701 | [X:[], M:[0.9671, 1.0164, 1.0, 0.7295, 1.2377, 0.7295, 1.0329, 0.7623], q:[0.5164, 0.5164], qb:[0.7541, 0.2459], phi:[0.4918]] | [X:[], M:[[0, 8], [0, -4], [0, 0], [1, 9], [-1, -1], [-1, 1], [0, -8], [1, 1]], q:[[-1, -8], [1, 0]], qb:[[0, -1], [0, 1]], phi:[[0, 2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ M_4$, $ q_1\tilde{q}_2$, $ M_8$, $ \phi_1\tilde{q}_2^2$, $ M_3$, $ M_2$, $ M_7$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_6^2$, $ M_4M_6$, $ M_4^2$, $ M_6q_1\tilde{q}_2$, $ M_6M_8$, $ M_4q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4M_8$, $ \phi_1q_1^2$, $ q_1^2\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ M_8q_1\tilde{q}_2$, $ M_8^2$, $ \phi_1q_2^2$, $ M_6\phi_1\tilde{q}_2^2$, $ M_4\phi_1\tilde{q}_2^2$, $ M_2M_6$, $ \phi_1q_1\tilde{q}_2^3$, $ M_2M_4$, $ M_8\phi_1\tilde{q}_2^2$, $ M_6M_7$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_7$, $ M_3M_8$, $ \phi_1q_2\tilde{q}_1$, $ M_2q_1\tilde{q}_2$, $ M_2M_8$, $ M_7q_1\tilde{q}_2$, $ M_7M_8$, $ \phi_1^2\tilde{q}_2^4$, $ M_6\phi_1q_1\tilde{q}_2$, $ M_4\phi_1q_1\tilde{q}_2$, $ M_6\phi_1q_2\tilde{q}_2$, $ M_4\phi_1q_2\tilde{q}_2$ | . | -4 | 2*t^2.19 + 2*t^2.29 + t^2.95 + t^3. + t^3.05 + t^3.1 + 2*t^3.76 + 3*t^4.38 + 4*t^4.48 + 6*t^4.57 + 2*t^5.14 + 4*t^5.24 + 4*t^5.29 + 2*t^5.34 + 2*t^5.39 + t^5.9 + 4*t^5.95 - 4*t^6. + 5*t^6.05 + t^6.1 + t^6.15 + t^6.2 + 4*t^6.57 + 4*t^6.66 + 10*t^6.76 - 2*t^6.81 + 10*t^6.86 + 3*t^7.33 - t^7.38 + 7*t^7.43 - t^7.48 + 8*t^7.52 + 6*t^7.57 + 3*t^7.62 + 6*t^7.67 + 2*t^8.09 + 4*t^8.14 - 8*t^8.19 + 8*t^8.24 - 10*t^8.29 + 12*t^8.34 + 2*t^8.39 + 2*t^8.43 + 2*t^8.48 + 5*t^8.75 + 5*t^8.85 + 3*t^8.9 + 5*t^8.95 - t^4.48/y - (2*t^6.66)/y + t^7.38/y + (4*t^7.48)/y + t^7.57/y + (2*t^8.14)/y + (2*t^8.19)/y + (4*t^8.24)/y + (6*t^8.29)/y + (2*t^8.34)/y + (2*t^8.39)/y - (3*t^8.85)/y + (5*t^8.95)/y - t^4.48*y - 2*t^6.66*y + t^7.38*y + 4*t^7.48*y + t^7.57*y + 2*t^8.14*y + 2*t^8.19*y + 4*t^8.24*y + 6*t^8.29*y + 2*t^8.34*y + 2*t^8.39*y - 3*t^8.85*y + 5*t^8.95*y | (g2*t^2.19)/g1 + g1*g2^9*t^2.19 + t^2.29/(g1*g2^7) + g1*g2*t^2.29 + g2^4*t^2.95 + t^3. + t^3.05/g2^4 + t^3.1/g2^8 + t^3.76/(g1*g2^5) + g1*g2^3*t^3.76 + (g2^2*t^4.38)/g1^2 + g2^10*t^4.38 + g1^2*g2^18*t^4.38 + t^4.48/(g1^2*g2^6) + 2*g2^2*t^4.48 + g1^2*g2^10*t^4.48 + (2*t^4.57)/(g1^2*g2^14) + (2*t^4.57)/g2^6 + 2*g1^2*g2^2*t^4.57 + (g2^5*t^5.14)/g1 + g1*g2^13*t^5.14 + (2*t^5.24)/(g1*g2^3) + 2*g1*g2^5*t^5.24 + (2*t^5.29)/(g1*g2^7) + 2*g1*g2*t^5.29 + t^5.34/(g1*g2^11) + (g1*t^5.34)/g2^3 + t^5.39/(g1*g2^15) + (g1*t^5.39)/g2^7 + g2^8*t^5.9 + t^5.95/(g1^2*g2^4) + 2*g2^4*t^5.95 + g1^2*g2^12*t^5.95 - 2*t^6. - t^6./(g1^2*g2^8) - g1^2*g2^8*t^6. + t^6.05/(g1^2*g2^12) + (3*t^6.05)/g2^4 + g1^2*g2^4*t^6.05 + t^6.1/g2^8 + t^6.15/g2^12 + t^6.2/g2^16 + (g2^3*t^6.57)/g1^3 + (g2^11*t^6.57)/g1 + g1*g2^19*t^6.57 + g1^3*g2^27*t^6.57 + t^6.66/(g1^3*g2^5) + (g2^3*t^6.66)/g1 + g1*g2^11*t^6.66 + g1^3*g2^19*t^6.66 + (2*t^6.76)/(g1^3*g2^13) + (3*t^6.76)/(g1*g2^5) + 3*g1*g2^3*t^6.76 + 2*g1^3*g2^11*t^6.76 - t^6.81/(g1*g2^9) - (g1*t^6.81)/g2 + (2*t^6.86)/(g1^3*g2^21) + (3*t^6.86)/(g1*g2^13) + (3*g1*t^6.86)/g2^5 + 2*g1^3*g2^3*t^6.86 + (g2^6*t^7.33)/g1^2 + g2^14*t^7.33 + g1^2*g2^22*t^7.33 - g2^10*t^7.38 + (2*t^7.43)/(g1^2*g2^2) + 3*g2^6*t^7.43 + 2*g1^2*g2^14*t^7.43 - g2^2*t^7.48 + (3*t^7.52)/(g1^2*g2^10) + (2*t^7.52)/g2^2 + 3*g1^2*g2^6*t^7.52 + (2*t^7.57)/(g1^2*g2^14) + (2*t^7.57)/g2^6 + 2*g1^2*g2^2*t^7.57 + t^7.62/(g1^2*g2^18) + t^7.62/g2^10 + (g1^2*t^7.62)/g2^2 + (2*t^7.67)/(g1^2*g2^22) + (2*t^7.67)/g2^14 + (2*g1^2*t^7.67)/g2^6 + (g2^9*t^8.09)/g1 + g1*g2^17*t^8.09 + t^8.14/(g1^3*g2^3) + (g2^5*t^8.14)/g1 + g1*g2^13*t^8.14 + g1^3*g2^21*t^8.14 - t^8.19/(g1^3*g2^7) - (3*g2*t^8.19)/g1 - 3*g1*g2^9*t^8.19 - g1^3*g2^17*t^8.19 + t^8.24/(g1^3*g2^11) + (3*t^8.24)/(g1*g2^3) + 3*g1*g2^5*t^8.24 + g1^3*g2^13*t^8.24 - t^8.29/(g1^3*g2^15) - (4*t^8.29)/(g1*g2^7) - 4*g1*g2*t^8.29 - g1^3*g2^9*t^8.29 + (2*t^8.34)/(g1^3*g2^19) + (4*t^8.34)/(g1*g2^11) + (4*g1*t^8.34)/g2^3 + 2*g1^3*g2^5*t^8.34 + t^8.39/(g1*g2^15) + (g1*t^8.39)/g2^7 + t^8.43/(g1*g2^19) + (g1*t^8.43)/g2^11 + t^8.48/(g1*g2^23) + (g1*t^8.48)/g2^15 + (g2^4*t^8.75)/g1^4 + (g2^12*t^8.75)/g1^2 + g2^20*t^8.75 + g1^2*g2^28*t^8.75 + g1^4*g2^36*t^8.75 + t^8.85/(g1^4*g2^4) + (g2^4*t^8.85)/g1^2 + g2^12*t^8.85 + g1^2*g2^20*t^8.85 + g1^4*g2^28*t^8.85 + t^8.9/g1^2 + g2^8*t^8.9 + g1^2*g2^16*t^8.9 + (2*t^8.95)/(g1^4*g2^12) + t^8.95/(g1^2*g2^4) - g2^4*t^8.95 + g1^2*g2^12*t^8.95 + 2*g1^4*g2^20*t^8.95 - (g2^2*t^4.48)/y - (g2^3*t^6.66)/(g1*y) - (g1*g2^11*t^6.66)/y + (g2^10*t^7.38)/y + t^7.48/(g1^2*g2^6*y) + (2*g2^2*t^7.48)/y + (g1^2*g2^10*t^7.48)/y + t^7.57/(g2^6*y) + (g2^5*t^8.14)/(g1*y) + (g1*g2^13*t^8.14)/y + (g2*t^8.19)/(g1*y) + (g1*g2^9*t^8.19)/y + (2*t^8.24)/(g1*g2^3*y) + (2*g1*g2^5*t^8.24)/y + (3*t^8.29)/(g1*g2^7*y) + (3*g1*g2*t^8.29)/y + t^8.34/(g1*g2^11*y) + (g1*t^8.34)/(g2^3*y) + t^8.39/(g1*g2^15*y) + (g1*t^8.39)/(g2^7*y) - (g2^4*t^8.85)/(g1^2*y) - (g2^12*t^8.85)/y - (g1^2*g2^20*t^8.85)/y + t^8.95/(g1^2*g2^4*y) + (3*g2^4*t^8.95)/y + (g1^2*g2^12*t^8.95)/y - g2^2*t^4.48*y - (g2^3*t^6.66*y)/g1 - g1*g2^11*t^6.66*y + g2^10*t^7.38*y + (t^7.48*y)/(g1^2*g2^6) + 2*g2^2*t^7.48*y + g1^2*g2^10*t^7.48*y + (t^7.57*y)/g2^6 + (g2^5*t^8.14*y)/g1 + g1*g2^13*t^8.14*y + (g2*t^8.19*y)/g1 + g1*g2^9*t^8.19*y + (2*t^8.24*y)/(g1*g2^3) + 2*g1*g2^5*t^8.24*y + (3*t^8.29*y)/(g1*g2^7) + 3*g1*g2*t^8.29*y + (t^8.34*y)/(g1*g2^11) + (g1*t^8.34*y)/g2^3 + (t^8.39*y)/(g1*g2^15) + (g1*t^8.39*y)/g2^7 - (g2^4*t^8.85*y)/g1^2 - g2^12*t^8.85*y - g1^2*g2^20*t^8.85*y + (t^8.95*y)/(g1^2*g2^4) + 3*g2^4*t^8.95*y + g1^2*g2^12*t^8.95*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2017 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_1M_7$ + $ M_5M_8$ + $ \phi_1\tilde{q}_1^2$ | 0.7202 | 0.897 | 0.803 | [X:[], M:[0.9657, 1.1723, 0.6898, 0.6898, 0.9657, 0.6898, 1.0343, 1.0343], q:[0.5172, 0.5172], qb:[0.7931, 0.5172], phi:[0.4139]] | 3*t^2.07 + 3*t^3.1 + t^3.52 + 6*t^4.14 + 6*t^4.34 + 9*t^5.17 + 3*t^5.59 - 9*t^6. - t^4.24/y - t^4.24*y | detail |