Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3055 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_3M_6$ + $ M_7q_1\tilde{q}_1$ + $ M_8q_1\tilde{q}_2$ 0.6632 0.8813 0.7525 [X:[], M:[1.0, 1.02, 0.9601, 0.745, 0.745, 1.0399, 0.7251, 0.7251], q:[0.755, 0.245], qb:[0.52, 0.52], phi:[0.49]] [X:[], M:[[0, 0], [4, 4], [-8, -8], [-5, 3], [3, -5], [8, 8], [-9, -1], [-1, -9]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_8$, $ M_7$, $ M_5$, $ M_4$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ M_1$, $ M_2$, $ M_6$, $ M_8^2$, $ M_7M_8$, $ M_7^2$, $ M_5M_8$, $ M_5M_7$, $ M_4M_8$, $ M_4M_7$, $ M_5^2$, $ M_8q_2\tilde{q}_1$, $ M_4M_5$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_2$, $ M_4^2$, $ M_7q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_8\phi_1q_2^2$, $ M_7\phi_1q_2^2$, $ M_1M_8$, $ M_5\phi_1q_2^2$, $ M_1M_7$, $ M_4\phi_1q_2^2$, $ M_1M_5$, $ M_2M_8$, $ \phi_1q_2^3\tilde{q}_1$, $ M_1M_4$, $ M_2M_7$, $ \phi_1q_2^3\tilde{q}_2$, $ M_2M_5$, $ M_6M_8$, $ \phi_1q_1\tilde{q}_1$, $ M_2M_4$, $ M_6M_7$, $ \phi_1q_1\tilde{q}_2$, $ M_5M_6$, $ M_2q_2\tilde{q}_1$, $ M_4M_6$, $ M_2q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ \phi_1^2q_2^4$ . -4 2*t^2.18 + 2*t^2.24 + 2*t^2.29 + t^2.94 + t^3. + t^3.06 + t^3.12 + 3*t^4.35 + 4*t^4.41 + 7*t^4.47 + 4*t^4.53 + 6*t^4.59 + 2*t^5.12 + 2*t^5.18 + 6*t^5.24 + 6*t^5.29 + 4*t^5.35 + 2*t^5.41 + t^5.88 - 4*t^6. + t^6.06 + t^6.12 + t^6.18 + t^6.24 + 4*t^6.53 + 6*t^6.59 + 10*t^6.65 + 10*t^6.71 + 14*t^6.76 + 8*t^6.82 + 8*t^6.88 + 3*t^7.29 + 3*t^7.35 + 10*t^7.41 + 10*t^7.47 + 16*t^7.53 + 13*t^7.59 + 7*t^7.65 + 6*t^7.71 + 2*t^8.06 - 8*t^8.18 - 8*t^8.24 - 8*t^8.29 + 2*t^8.35 + 4*t^8.41 + 4*t^8.47 + 2*t^8.53 + 5*t^8.7 + 8*t^8.76 + 14*t^8.82 + 15*t^8.88 + 18*t^8.94 - t^4.47/y - (2*t^6.65)/y - (2*t^6.71)/y + t^7.35/y + (4*t^7.41)/y + (5*t^7.47)/y + (4*t^7.53)/y + t^7.59/y + (2*t^8.12)/y + (4*t^8.18)/y + (8*t^8.24)/y + (8*t^8.29)/y + (4*t^8.35)/y + (2*t^8.41)/y - (3*t^8.82)/y - (4*t^8.88)/y - (2*t^8.94)/y - t^4.47*y - 2*t^6.65*y - 2*t^6.71*y + t^7.35*y + 4*t^7.41*y + 5*t^7.47*y + 4*t^7.53*y + t^7.59*y + 2*t^8.12*y + 4*t^8.18*y + 8*t^8.24*y + 8*t^8.29*y + 4*t^8.35*y + 2*t^8.41*y - 3*t^8.82*y - 4*t^8.88*y - 2*t^8.94*y t^2.18/(g1*g2^9) + t^2.18/(g1^9*g2) + (g1^3*t^2.24)/g2^5 + (g2^3*t^2.24)/g1^5 + (g1^7*t^2.29)/g2 + (g2^7*t^2.29)/g1 + t^2.94/(g1^4*g2^4) + t^3. + g1^4*g2^4*t^3.06 + g1^8*g2^8*t^3.12 + t^4.35/(g1^2*g2^18) + t^4.35/(g1^10*g2^10) + t^4.35/(g1^18*g2^2) + (g1^2*t^4.41)/g2^14 + (2*t^4.41)/(g1^6*g2^6) + (g2^2*t^4.41)/g1^14 + (2*g1^6*t^4.47)/g2^10 + (3*t^4.47)/(g1^2*g2^2) + (2*g2^6*t^4.47)/g1^10 + (g1^10*t^4.53)/g2^6 + 2*g1^2*g2^2*t^4.53 + (g2^10*t^4.53)/g1^6 + (2*g1^14*t^4.59)/g2^2 + 2*g1^6*g2^6*t^4.59 + (2*g2^14*t^4.59)/g1^2 + t^5.12/(g1^5*g2^13) + t^5.12/(g1^13*g2^5) + t^5.18/(g1*g2^9) + t^5.18/(g1^9*g2) + (3*g1^3*t^5.24)/g2^5 + (3*g2^3*t^5.24)/g1^5 + (3*g1^7*t^5.29)/g2 + (3*g2^7*t^5.29)/g1 + 2*g1^11*g2^3*t^5.35 + 2*g1^3*g2^11*t^5.35 + g1^15*g2^7*t^5.41 + g1^7*g2^15*t^5.41 + t^5.88/(g1^8*g2^8) - 2*t^6. - (g1^8*t^6.)/g2^8 - (g2^8*t^6.)/g1^8 + g1^4*g2^4*t^6.06 + g1^8*g2^8*t^6.12 + g1^12*g2^12*t^6.18 + g1^16*g2^16*t^6.24 + t^6.53/(g1^3*g2^27) + t^6.53/(g1^11*g2^19) + t^6.53/(g1^19*g2^11) + t^6.53/(g1^27*g2^3) + (g1*t^6.59)/g2^23 + (2*t^6.59)/(g1^7*g2^15) + (2*t^6.59)/(g1^15*g2^7) + (g2*t^6.59)/g1^23 + (2*g1^5*t^6.65)/g2^19 + (3*t^6.65)/(g1^3*g2^11) + (3*t^6.65)/(g1^11*g2^3) + (2*g2^5*t^6.65)/g1^19 + (2*g1^9*t^6.71)/g2^15 + (3*g1*t^6.71)/g2^7 + (3*g2*t^6.71)/g1^7 + (2*g2^9*t^6.71)/g1^15 + (3*g1^13*t^6.76)/g2^11 + (4*g1^5*t^6.76)/g2^3 + (4*g2^5*t^6.76)/g1^3 + (3*g2^13*t^6.76)/g1^11 + (2*g1^17*t^6.82)/g2^7 + 2*g1^9*g2*t^6.82 + 2*g1*g2^9*t^6.82 + (2*g2^17*t^6.82)/g1^7 + (2*g1^21*t^6.88)/g2^3 + 2*g1^13*g2^5*t^6.88 + 2*g1^5*g2^13*t^6.88 + (2*g2^21*t^6.88)/g1^3 + t^7.29/(g1^6*g2^22) + t^7.29/(g1^14*g2^14) + t^7.29/(g1^22*g2^6) + t^7.35/(g1^2*g2^18) + t^7.35/(g1^10*g2^10) + t^7.35/(g1^18*g2^2) + (3*g1^2*t^7.41)/g2^14 + (4*t^7.41)/(g1^6*g2^6) + (3*g2^2*t^7.41)/g1^14 + (3*g1^6*t^7.47)/g2^10 + (4*t^7.47)/(g1^2*g2^2) + (3*g2^6*t^7.47)/g1^10 + (5*g1^10*t^7.53)/g2^6 + 6*g1^2*g2^2*t^7.53 + (5*g2^10*t^7.53)/g1^6 + (4*g1^14*t^7.59)/g2^2 + 5*g1^6*g2^6*t^7.59 + (4*g2^14*t^7.59)/g1^2 + 2*g1^18*g2^2*t^7.65 + 3*g1^10*g2^10*t^7.65 + 2*g1^2*g2^18*t^7.65 + 2*g1^22*g2^6*t^7.71 + 2*g1^14*g2^14*t^7.71 + 2*g1^6*g2^22*t^7.71 + t^8.06/(g1^9*g2^17) + t^8.06/(g1^17*g2^9) - (g1^7*t^8.18)/g2^17 - (3*t^8.18)/(g1*g2^9) - (3*t^8.18)/(g1^9*g2) - (g2^7*t^8.18)/g1^17 - (g1^11*t^8.24)/g2^13 - (3*g1^3*t^8.24)/g2^5 - (3*g2^3*t^8.24)/g1^5 - (g2^11*t^8.24)/g1^13 - (g1^15*t^8.29)/g2^9 - (3*g1^7*t^8.29)/g2 - (3*g2^7*t^8.29)/g1 - (g2^15*t^8.29)/g1^9 + g1^11*g2^3*t^8.35 + g1^3*g2^11*t^8.35 + 2*g1^15*g2^7*t^8.41 + 2*g1^7*g2^15*t^8.41 + 2*g1^19*g2^11*t^8.47 + 2*g1^11*g2^19*t^8.47 + g1^23*g2^15*t^8.53 + g1^15*g2^23*t^8.53 + t^8.7/(g1^4*g2^36) + t^8.7/(g1^12*g2^28) + t^8.7/(g1^20*g2^20) + t^8.7/(g1^28*g2^12) + t^8.7/(g1^36*g2^4) + t^8.76/g1^32 + t^8.76/g2^32 + (2*t^8.76)/(g1^8*g2^24) + (2*t^8.76)/(g1^16*g2^16) + (2*t^8.76)/(g1^24*g2^8) + (2*g1^4*t^8.82)/g2^28 + (3*t^8.82)/(g1^4*g2^20) + (4*t^8.82)/(g1^12*g2^12) + (3*t^8.82)/(g1^20*g2^4) + (2*g2^4*t^8.82)/g1^28 + (4*t^8.88)/g1^16 + (2*g1^8*t^8.88)/g2^24 + (4*t^8.88)/g2^16 + (3*t^8.88)/(g1^8*g2^8) + (2*g2^8*t^8.88)/g1^24 + (4*g1^12*t^8.94)/g2^20 + (4*g1^4*t^8.94)/g2^12 + (2*t^8.94)/(g1^4*g2^4) + (4*g2^4*t^8.94)/g1^12 + (4*g2^12*t^8.94)/g1^20 - t^4.47/(g1^2*g2^2*y) - t^6.65/(g1^3*g2^11*y) - t^6.65/(g1^11*g2^3*y) - (g1*t^6.71)/(g2^7*y) - (g2*t^6.71)/(g1^7*y) + t^7.35/(g1^10*g2^10*y) + (g1^2*t^7.41)/(g2^14*y) + (2*t^7.41)/(g1^6*g2^6*y) + (g2^2*t^7.41)/(g1^14*y) + (g1^6*t^7.47)/(g2^10*y) + (3*t^7.47)/(g1^2*g2^2*y) + (g2^6*t^7.47)/(g1^10*y) + (g1^10*t^7.53)/(g2^6*y) + (2*g1^2*g2^2*t^7.53)/y + (g2^10*t^7.53)/(g1^6*y) + (g1^6*g2^6*t^7.59)/y + t^8.12/(g1^5*g2^13*y) + t^8.12/(g1^13*g2^5*y) + (2*t^8.18)/(g1*g2^9*y) + (2*t^8.18)/(g1^9*g2*y) + (4*g1^3*t^8.24)/(g2^5*y) + (4*g2^3*t^8.24)/(g1^5*y) + (4*g1^7*t^8.29)/(g2*y) + (4*g2^7*t^8.29)/(g1*y) + (2*g1^11*g2^3*t^8.35)/y + (2*g1^3*g2^11*t^8.35)/y + (g1^15*g2^7*t^8.41)/y + (g1^7*g2^15*t^8.41)/y - t^8.82/(g1^4*g2^20*y) - t^8.82/(g1^12*g2^12*y) - t^8.82/(g1^20*g2^4*y) - t^8.88/(g1^16*y) - t^8.88/(g2^16*y) - (2*t^8.88)/(g1^8*g2^8*y) - (g1^4*t^8.94)/(g2^12*y) - (g2^4*t^8.94)/(g1^12*y) - (t^4.47*y)/(g1^2*g2^2) - (t^6.65*y)/(g1^3*g2^11) - (t^6.65*y)/(g1^11*g2^3) - (g1*t^6.71*y)/g2^7 - (g2*t^6.71*y)/g1^7 + (t^7.35*y)/(g1^10*g2^10) + (g1^2*t^7.41*y)/g2^14 + (2*t^7.41*y)/(g1^6*g2^6) + (g2^2*t^7.41*y)/g1^14 + (g1^6*t^7.47*y)/g2^10 + (3*t^7.47*y)/(g1^2*g2^2) + (g2^6*t^7.47*y)/g1^10 + (g1^10*t^7.53*y)/g2^6 + 2*g1^2*g2^2*t^7.53*y + (g2^10*t^7.53*y)/g1^6 + g1^6*g2^6*t^7.59*y + (t^8.12*y)/(g1^5*g2^13) + (t^8.12*y)/(g1^13*g2^5) + (2*t^8.18*y)/(g1*g2^9) + (2*t^8.18*y)/(g1^9*g2) + (4*g1^3*t^8.24*y)/g2^5 + (4*g2^3*t^8.24*y)/g1^5 + (4*g1^7*t^8.29*y)/g2 + (4*g2^7*t^8.29*y)/g1 + 2*g1^11*g2^3*t^8.35*y + 2*g1^3*g2^11*t^8.35*y + g1^15*g2^7*t^8.41*y + g1^7*g2^15*t^8.41*y - (t^8.82*y)/(g1^4*g2^20) - (t^8.82*y)/(g1^12*g2^12) - (t^8.82*y)/(g1^20*g2^4) - (t^8.88*y)/g1^16 - (t^8.88*y)/g2^16 - (2*t^8.88*y)/(g1^8*g2^8) - (g1^4*t^8.94*y)/g2^12 - (g2^4*t^8.94*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2009 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_3M_6$ + $ M_7q_1\tilde{q}_1$ 0.6436 0.8459 0.7608 [X:[], M:[1.0, 1.0114, 0.9772, 0.7396, 0.7547, 1.0228, 0.7282], q:[0.7529, 0.2471], qb:[0.519, 0.5038], phi:[0.4943]] t^2.18 + t^2.22 + t^2.25 + t^2.26 + t^2.3 + t^2.97 + t^3. + t^3.03 + t^3.07 + t^3.77 + t^4.37 + t^4.4 + 2*t^4.44 + t^4.45 + t^4.47 + 2*t^4.48 + 2*t^4.51 + 2*t^4.52 + t^4.53 + 2*t^4.55 + t^4.56 + 2*t^4.6 + t^5.15 + t^5.18 + 3*t^5.22 + 3*t^5.25 + 2*t^5.26 + 2*t^5.29 + 2*t^5.3 + t^5.32 + 2*t^5.33 + t^5.37 + t^5.93 + t^5.99 - 2*t^6. - t^4.48/y - t^4.48*y detail