Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3034 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}q_{1}q_{2}$ + ${ }M_{1}M_{7}$ | 0.6596 | 0.8201 | 0.8043 | [M:[1.1354, 0.7434, 0.8646, 0.8646, 1.2162, 0.703, 0.8646], q:[0.804, 0.4929], qb:[0.3717, 0.7636], phi:[0.3919]] | [M:[[16], [14], [-16], [-16], [-4], [24], [-16]], q:[[-1], [-23]], qb:[[7], [9]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{4}$, ${ }M_{7}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{7}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ | ${}$ | -3 | t^2.109 + t^2.23 + 3*t^2.594 + t^3.527 + t^3.648 + t^3.77 + t^4.133 + t^4.218 + t^4.339 + t^4.461 + t^4.582 + 4*t^4.703 + 2*t^4.824 + t^4.945 + 5*t^5.188 + 3*t^5.758 + t^5.879 - 3*t^6. + 2*t^6.121 + 3*t^6.242 + t^6.327 + 2*t^6.364 + t^6.448 + t^6.57 + 2*t^6.691 + 3*t^6.727 + 3*t^6.812 + 2*t^6.933 + 2*t^7.055 + t^7.176 + 7*t^7.297 + 3*t^7.418 + t^7.539 + 7*t^7.782 + 2*t^7.867 + t^7.903 + 2*t^7.988 - 3*t^8.109 - 2*t^8.23 + t^8.267 + 5*t^8.352 + t^8.436 + t^8.473 + t^8.558 - 9*t^8.594 + t^8.679 + 3*t^8.715 + 2*t^8.8 + 5*t^8.836 + 4*t^8.921 + 2*t^8.958 - t^4.176/y - t^6.285/y - t^6.406/y - (2*t^6.77)/y + t^7.339/y + (2*t^7.582)/y + (3*t^7.703)/y + (3*t^7.824)/y + t^7.945/y + t^8.067/y + (3*t^8.188)/y - t^8.394/y - t^8.515/y + (2*t^8.758)/y - t^4.176*y - t^6.285*y - t^6.406*y - 2*t^6.77*y + t^7.339*y + 2*t^7.582*y + 3*t^7.703*y + 3*t^7.824*y + t^7.945*y + t^8.067*y + 3*t^8.188*y - t^8.394*y - t^8.515*y + 2*t^8.758*y | g1^24*t^2.109 + g1^14*t^2.23 + (3*t^2.594)/g1^16 + g1^6*t^3.527 + t^3.648/g1^4 + t^3.77/g1^14 + t^4.133/g1^44 + g1^48*t^4.218 + g1^38*t^4.339 + g1^28*t^4.461 + g1^18*t^4.582 + 4*g1^8*t^4.703 + (2*t^4.824)/g1^2 + t^4.945/g1^12 + (5*t^5.188)/g1^32 + 3*g1^20*t^5.758 + g1^10*t^5.879 - 3*t^6. + (2*t^6.121)/g1^10 + (3*t^6.242)/g1^20 + g1^72*t^6.327 + (2*t^6.364)/g1^30 + g1^62*t^6.448 + g1^52*t^6.57 + 2*g1^42*t^6.691 + (3*t^6.727)/g1^60 + 3*g1^32*t^6.812 + 2*g1^22*t^6.933 + 2*g1^12*t^7.055 + g1^2*t^7.176 + (7*t^7.297)/g1^8 + (3*t^7.418)/g1^18 + t^7.539/g1^28 + (7*t^7.782)/g1^48 + 2*g1^44*t^7.867 + t^7.903/g1^58 + 2*g1^34*t^7.988 - 3*g1^24*t^8.109 - 2*g1^14*t^8.23 + t^8.267/g1^88 + 5*g1^4*t^8.352 + g1^96*t^8.436 + t^8.473/g1^6 + g1^86*t^8.558 - (9*t^8.594)/g1^16 + g1^76*t^8.679 + (3*t^8.715)/g1^26 + 2*g1^66*t^8.8 + (5*t^8.836)/g1^36 + 4*g1^56*t^8.921 + (2*t^8.958)/g1^46 - (g1^2*t^4.176)/y - (g1^26*t^6.285)/y - (g1^16*t^6.406)/y - (2*t^6.77)/(g1^14*y) + (g1^38*t^7.339)/y + (2*g1^18*t^7.582)/y + (3*g1^8*t^7.703)/y + (3*t^7.824)/(g1^2*y) + t^7.945/(g1^12*y) + t^8.067/(g1^22*y) + (3*t^8.188)/(g1^32*y) - (g1^50*t^8.394)/y - (g1^40*t^8.515)/y + (2*g1^20*t^8.758)/y - g1^2*t^4.176*y - g1^26*t^6.285*y - g1^16*t^6.406*y - (2*t^6.77*y)/g1^14 + g1^38*t^7.339*y + 2*g1^18*t^7.582*y + 3*g1^8*t^7.703*y + (3*t^7.824*y)/g1^2 + (t^7.945*y)/g1^12 + (t^8.067*y)/g1^22 + (3*t^8.188*y)/g1^32 - g1^50*t^8.394*y - g1^40*t^8.515*y + 2*g1^20*t^8.758*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1982 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}q_{1}q_{2}$ | 0.6481 | 0.8005 | 0.8096 | [M:[1.122, 0.7318, 0.878, 0.878, 1.2195, 0.6831], q:[0.8049, 0.5121], qb:[0.3659, 0.7562], phi:[0.3903]] | t^2.049 + t^2.195 + 2*t^2.634 + t^3.366 + t^3.512 + t^3.658 + t^3.805 + t^4.098 + t^4.243 + t^4.245 + t^4.391 + t^4.537 + 3*t^4.683 + t^4.829 + t^4.975 + 2*t^5.268 + t^5.415 + t^5.562 + 3*t^5.708 + t^5.854 - t^6. - t^4.171/y - t^4.171*y | detail |