Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3003 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_1M_6$ + $ M_4M_7$ + $ \phi_1\tilde{q}_1^2$ + $ M_2^2$ 0.6271 0.8146 0.7698 [X:[], M:[0.9334, 1.0, 0.7084, 1.225, 0.7084, 1.0666, 0.775], q:[0.5333, 0.5333], qb:[0.7583, 0.2417], phi:[0.4834]] [X:[], M:[[0, 8], [0, 0], [1, 9], [-1, -1], [-1, 1], [0, -8], [1, 1]], q:[[-1, -8], [1, 0]], qb:[[0, -1], [0, 1]], phi:[[0, 2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_3$, $ q_1\tilde{q}_2$, $ M_7$, $ \phi_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_2$, $ M_6$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_5^2$, $ M_3M_5$, $ M_3^2$, $ M_5q_1\tilde{q}_2$, $ M_5M_7$, $ M_3q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3M_7$, $ \phi_1q_1^2$, $ q_1^2\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ M_7q_1\tilde{q}_2$, $ M_7^2$, $ \phi_1q_2^2$, $ M_5\phi_1^2$, $ M_5\phi_1\tilde{q}_2^2$, $ M_3\phi_1^2$, $ M_3\phi_1\tilde{q}_2^2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2^3$, $ M_7\phi_1^2$, $ M_7\phi_1\tilde{q}_2^2$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_6$, $ M_2M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_6q_1\tilde{q}_2$, $ M_6M_7$, $ \phi_1^4$, $ \phi_1^3\tilde{q}_2^2$, $ \phi_1^2\tilde{q}_2^4$, $ M_5\phi_1q_1\tilde{q}_2$, $ M_2\phi_1^2$, $ M_3\phi_1q_1\tilde{q}_2$, $ M_5\phi_1q_2\tilde{q}_2$, $ M_3\phi_1q_2\tilde{q}_2$ . -5 2*t^2.13 + 2*t^2.32 + 2*t^2.9 + t^3. + t^3.2 + 2*t^3.77 + 3*t^4.25 + 4*t^4.45 + 6*t^4.65 + 4*t^5.03 + 4*t^5.23 + 4*t^5.32 + 2*t^5.52 + 3*t^5.8 + 5*t^5.9 - 5*t^6. + 5*t^6.1 + 4*t^6.38 + t^6.4 + 4*t^6.58 + 2*t^6.68 + 10*t^6.77 - 4*t^6.87 + 10*t^6.97 + 6*t^7.15 - t^7.25 + 8*t^7.35 - t^7.45 + 10*t^7.55 + 6*t^7.65 - 3*t^7.75 + 6*t^7.85 + 6*t^7.93 + 4*t^8.03 - 6*t^8.13 + 12*t^8.23 - 14*t^8.32 + 10*t^8.42 + 5*t^8.5 + 8*t^8.7 + 2*t^8.72 + 8*t^8.8 - t^8.9 - t^4.45/y - (2*t^6.58)/y + t^7.25/y - t^7.35/y + (4*t^7.45)/y + t^7.55/y + t^7.65/y + (4*t^8.03)/y + (2*t^8.13)/y + (4*t^8.23)/y + (6*t^8.32)/y + (2*t^8.52)/y - (3*t^8.7)/y + t^8.8/y + (6*t^8.9)/y - t^4.45*y - 2*t^6.58*y + t^7.25*y - t^7.35*y + 4*t^7.45*y + t^7.55*y + t^7.65*y + 4*t^8.03*y + 2*t^8.13*y + 4*t^8.23*y + 6*t^8.32*y + 2*t^8.52*y - 3*t^8.7*y + t^8.8*y + 6*t^8.9*y (g2*t^2.13)/g1 + g1*g2^9*t^2.13 + t^2.32/(g1*g2^7) + g1*g2*t^2.32 + 2*g2^4*t^2.9 + t^3. + t^3.2/g2^8 + t^3.77/(g1*g2^5) + g1*g2^3*t^3.77 + (g2^2*t^4.25)/g1^2 + g2^10*t^4.25 + g1^2*g2^18*t^4.25 + t^4.45/(g1^2*g2^6) + 2*g2^2*t^4.45 + g1^2*g2^10*t^4.45 + (2*t^4.65)/(g1^2*g2^14) + (2*t^4.65)/g2^6 + 2*g1^2*g2^2*t^4.65 + (2*g2^5*t^5.03)/g1 + 2*g1*g2^13*t^5.03 + (2*t^5.23)/(g1*g2^3) + 2*g1*g2^5*t^5.23 + (2*t^5.32)/(g1*g2^7) + 2*g1*g2*t^5.32 + t^5.52/(g1*g2^15) + (g1*t^5.52)/g2^7 + 3*g2^8*t^5.8 + t^5.9/(g1^2*g2^4) + 3*g2^4*t^5.9 + g1^2*g2^12*t^5.9 - 3*t^6. - t^6./(g1^2*g2^8) - g1^2*g2^8*t^6. + t^6.1/(g1^2*g2^12) + (3*t^6.1)/g2^4 + g1^2*g2^4*t^6.1 + (g2^3*t^6.38)/g1^3 + (g2^11*t^6.38)/g1 + g1*g2^19*t^6.38 + g1^3*g2^27*t^6.38 + t^6.4/g2^16 + t^6.58/(g1^3*g2^5) + (g2^3*t^6.58)/g1 + g1*g2^11*t^6.58 + g1^3*g2^19*t^6.58 + t^6.68/(g1*g2) + g1*g2^7*t^6.68 + (2*t^6.77)/(g1^3*g2^13) + (3*t^6.77)/(g1*g2^5) + 3*g1*g2^3*t^6.77 + 2*g1^3*g2^11*t^6.77 - (2*t^6.87)/(g1*g2^9) - (2*g1*t^6.87)/g2 + (2*t^6.97)/(g1^3*g2^21) + (3*t^6.97)/(g1*g2^13) + (3*g1*t^6.97)/g2^5 + 2*g1^3*g2^3*t^6.97 + (2*g2^6*t^7.15)/g1^2 + 2*g2^14*t^7.15 + 2*g1^2*g2^22*t^7.15 - g2^10*t^7.25 + (2*t^7.35)/(g1^2*g2^2) + 4*g2^6*t^7.35 + 2*g1^2*g2^14*t^7.35 - g2^2*t^7.45 + (4*t^7.55)/(g1^2*g2^10) + (2*t^7.55)/g2^2 + 4*g1^2*g2^6*t^7.55 + (2*t^7.65)/(g1^2*g2^14) + (2*t^7.65)/g2^6 + 2*g1^2*g2^2*t^7.65 - t^7.75/(g1^2*g2^18) - t^7.75/g2^10 - (g1^2*t^7.75)/g2^2 + (2*t^7.85)/(g1^2*g2^22) + (2*t^7.85)/g2^14 + (2*g1^2*t^7.85)/g2^6 + (3*g2^9*t^7.93)/g1 + 3*g1*g2^17*t^7.93 + t^8.03/(g1^3*g2^3) + (g2^5*t^8.03)/g1 + g1*g2^13*t^8.03 + g1^3*g2^21*t^8.03 - t^8.13/(g1^3*g2^7) - (2*g2*t^8.13)/g1 - 2*g1*g2^9*t^8.13 - g1^3*g2^17*t^8.13 + t^8.23/(g1^3*g2^11) + (5*t^8.23)/(g1*g2^3) + 5*g1*g2^5*t^8.23 + g1^3*g2^13*t^8.23 - t^8.32/(g1^3*g2^15) - (6*t^8.32)/(g1*g2^7) - 6*g1*g2*t^8.32 - g1^3*g2^9*t^8.32 + (2*t^8.42)/(g1^3*g2^19) + (3*t^8.42)/(g1*g2^11) + (3*g1*t^8.42)/g2^3 + 2*g1^3*g2^5*t^8.42 + (g2^4*t^8.5)/g1^4 + (g2^12*t^8.5)/g1^2 + g2^20*t^8.5 + g1^2*g2^28*t^8.5 + g1^4*g2^36*t^8.5 + t^8.7/(g1^4*g2^4) + (g2^4*t^8.7)/g1^2 + 4*g2^12*t^8.7 + g1^2*g2^20*t^8.7 + g1^4*g2^28*t^8.7 + t^8.72/(g1*g2^23) + (g1*t^8.72)/g2^15 + (2*t^8.8)/g1^2 + 4*g2^8*t^8.8 + 2*g1^2*g2^16*t^8.8 + (2*t^8.9)/(g1^4*g2^12) - 5*g2^4*t^8.9 + 2*g1^4*g2^20*t^8.9 - (g2^2*t^4.45)/y - (g2^3*t^6.58)/(g1*y) - (g1*g2^11*t^6.58)/y + (g2^10*t^7.25)/y - (g2^6*t^7.35)/y + t^7.45/(g1^2*g2^6*y) + (2*g2^2*t^7.45)/y + (g1^2*g2^10*t^7.45)/y + t^7.55/(g2^2*y) + t^7.65/(g2^6*y) + (2*g2^5*t^8.03)/(g1*y) + (2*g1*g2^13*t^8.03)/y + (g2*t^8.13)/(g1*y) + (g1*g2^9*t^8.13)/y + (2*t^8.23)/(g1*g2^3*y) + (2*g1*g2^5*t^8.23)/y + (3*t^8.32)/(g1*g2^7*y) + (3*g1*g2*t^8.32)/y + t^8.52/(g1*g2^15*y) + (g1*t^8.52)/(g2^7*y) - (g2^4*t^8.7)/(g1^2*y) - (g2^12*t^8.7)/y - (g1^2*g2^20*t^8.7)/y + (g2^8*t^8.8)/y + t^8.9/(g1^2*g2^4*y) + (4*g2^4*t^8.9)/y + (g1^2*g2^12*t^8.9)/y - g2^2*t^4.45*y - (g2^3*t^6.58*y)/g1 - g1*g2^11*t^6.58*y + g2^10*t^7.25*y - g2^6*t^7.35*y + (t^7.45*y)/(g1^2*g2^6) + 2*g2^2*t^7.45*y + g1^2*g2^10*t^7.45*y + (t^7.55*y)/g2^2 + (t^7.65*y)/g2^6 + (2*g2^5*t^8.03*y)/g1 + 2*g1*g2^13*t^8.03*y + (g2*t^8.13*y)/g1 + g1*g2^9*t^8.13*y + (2*t^8.23*y)/(g1*g2^3) + 2*g1*g2^5*t^8.23*y + (3*t^8.32*y)/(g1*g2^7) + 3*g1*g2*t^8.32*y + (t^8.52*y)/(g1*g2^15) + (g1*t^8.52*y)/g2^7 - (g2^4*t^8.7*y)/g1^2 - g2^12*t^8.7*y - g1^2*g2^20*t^8.7*y + g2^8*t^8.8*y + (t^8.9*y)/(g1^2*g2^4) + 4*g2^4*t^8.9*y + g1^2*g2^12*t^8.9*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3632 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_1M_6$ + $ M_4M_7$ + $ \phi_1\tilde{q}_1^2$ + $ M_2^2$ + $ M_5\phi_1q_1\tilde{q}_2$ 0.6266 0.8141 0.7697 [X:[], M:[0.9438, 1.0, 0.7009, 1.243, 0.7289, 1.0562, 0.757], q:[0.5421, 0.514], qb:[0.757, 0.243], phi:[0.486]] t^2.1 + t^2.19 + t^2.27 + t^2.36 + 2*t^2.92 + t^3. + t^3.17 + t^3.73 + t^3.81 + t^4.21 + t^4.29 + 2*t^4.37 + 2*t^4.46 + 3*t^4.54 + 2*t^4.63 + 2*t^4.71 + 2*t^5.02 + 2*t^5.1 + 2*t^5.19 + 4*t^5.27 + 2*t^5.36 + t^5.44 + t^5.52 + 4*t^5.83 + 2*t^5.92 - t^6. - t^4.46/y - t^4.46*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1954 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_1M_6$ + $ M_4M_7$ + $ \phi_1\tilde{q}_1^2$ 0.7356 0.9231 0.7969 [X:[], M:[0.9431, 0.6737, 0.6737, 0.9431, 0.6737, 1.0569, 1.0569], q:[0.5284, 0.5284], qb:[0.7979, 0.5284], phi:[0.4042]] 3*t^2.02 + t^2.43 + 3*t^3.17 + 6*t^4.04 + 6*t^4.38 + 3*t^4.45 + t^4.85 + 9*t^5.19 + 3*t^5.6 - 9*t^6. - t^4.21/y - t^4.21*y detail