Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
299 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_1M_2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_1M_4$ 0.5546 0.7066 0.7849 [X:[], M:[1.0328, 0.9672, 0.7599, 0.9672], q:[0.5631, 1.0051], qb:[0.4041, 0.3005], phi:[0.4318]] [X:[], M:[[-1, 5], [1, -5], [-5, 1], [1, -5]], q:[[-2, -5], [3, 6]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\tilde{q}_1\tilde{q}_2$, $ M_3$, $ \phi_1^2$, $ q_1\tilde{q}_2$, $ M_2$, $ M_4$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ q_1q_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$, $ M_3\phi_1^2$, $ M_3q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_2M_3$, $ M_3M_4$, $ \phi_1^4$, $ q_1^2\tilde{q}_2^2$, $ M_2\phi_1^2$, $ M_4\phi_1^2$, $ M_2q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2^2$, $ M_2^2$, $ M_2M_4$, $ M_4^2$ $\phi_1^3\tilde{q}_1\tilde{q}_2$ -2 t^2.11 + t^2.28 + 2*t^2.59 + 2*t^2.9 + t^3.41 + t^3.92 + 2*t^4.23 + t^4.39 + t^4.56 + 3*t^4.7 + 2*t^4.87 + 2*t^5.02 + 4*t^5.18 + 3*t^5.49 + t^5.52 + 3*t^5.8 - 2*t^6. + t^6.03 + t^6.2 + 2*t^6.34 - t^6.48 + 2*t^6.51 + t^6.67 - t^6.79 + 4*t^6.82 + t^6.84 + 2*t^6.98 + 3*t^7.13 + 2*t^7.15 + 3*t^7.3 + 4*t^7.46 + 3*t^7.61 + t^7.64 + 5*t^7.77 - 2*t^7.8 + t^7.83 + 3*t^7.92 + 5*t^8.08 - 4*t^8.11 + 2*t^8.14 - 4*t^8.28 + t^8.31 + 4*t^8.39 - t^8.42 + 3*t^8.46 + t^8.48 - 6*t^8.59 + 2*t^8.62 + 4*t^8.71 - t^8.76 + 2*t^8.79 - 8*t^8.9 + 4*t^8.93 + t^8.95 - t^4.3/y - t^6.58/y - t^6.89/y - t^7.2/y + (2*t^7.39)/y + (3*t^7.7)/y + (2*t^7.87)/y + (3*t^8.02)/y + (3*t^8.18)/y + (4*t^8.49)/y + t^8.52/y + t^8.69/y + t^8.8/y - t^8.85/y - t^4.3*y - t^6.58*y - t^6.89*y - t^7.2*y + 2*t^7.39*y + 3*t^7.7*y + 2*t^7.87*y + 3*t^8.02*y + 3*t^8.18*y + 4*t^8.49*y + t^8.52*y + t^8.69*y + t^8.8*y - t^8.85*y g1^3*g2^3*t^2.11 + (g2*t^2.28)/g1^5 + (2*t^2.59)/(g1^2*g2^2) + (2*g1*t^2.9)/g2^5 + g1^2*g2^2*t^3.41 + g1^3*g2^9*t^3.92 + 2*g1^6*g2^6*t^4.23 + (g2^4*t^4.39)/g1^2 + (g2^2*t^4.56)/g1^10 + 3*g1*g2*t^4.7 + (2*t^4.87)/(g1^7*g2) + (2*g1^4*t^5.02)/g2^2 + (4*t^5.18)/(g1^4*g2^4) + (3*t^5.49)/(g1*g2^7) + g1^5*g2^5*t^5.52 + (3*g1^2*t^5.8)/g2^10 - 2*t^6. + g1^6*g2^12*t^6.03 + (g2^10*t^6.2)/g1^2 + 2*g1^9*g2^9*t^6.34 - t^6.48/(g1^5*g2^5) + 2*g1*g2^7*t^6.51 + (g2^5*t^6.67)/g1^7 - t^6.79/(g1^2*g2^8) + 4*g1^4*g2^4*t^6.82 + (g2^3*t^6.84)/g1^15 + (2*g2^2*t^6.98)/g1^4 + 3*g1^7*g2*t^7.13 + (2*t^7.15)/g1^12 + (3*t^7.3)/(g1*g2) + (4*t^7.46)/(g1^9*g2^3) + (3*g1^2*t^7.61)/g2^4 + g1^8*g2^8*t^7.64 + (5*t^7.77)/(g1^6*g2^6) - 2*g2^6*t^7.8 + g1^6*g2^18*t^7.83 + (3*g1^5*t^7.92)/g2^7 + (5*t^8.08)/(g1^3*g2^9) - 4*g1^3*g2^3*t^8.11 + 2*g1^9*g2^15*t^8.14 - (4*g2*t^8.28)/g1^5 + g1*g2^13*t^8.31 + (4*t^8.39)/g2^12 - g1^6*t^8.42 + 3*g1^12*g2^12*t^8.46 + (g2^11*t^8.48)/g1^7 - (6*t^8.59)/(g1^2*g2^2) + 2*g1^4*g2^10*t^8.62 + (4*g1^3*t^8.71)/g2^15 - t^8.76/(g1^10*g2^4) + (2*g2^8*t^8.79)/g1^4 - (8*g1*t^8.9)/g2^5 + 4*g1^7*g2^7*t^8.93 + (g2^6*t^8.95)/g1^12 - t^4.3/(g1*g2*y) - t^6.58/(g1^6*y) - t^6.89/(g1^3*g2^3*y) - t^7.2/(g2^6*y) + (2*g2^4*t^7.39)/(g1^2*y) + (3*g1*g2*t^7.7)/y + (2*t^7.87)/(g1^7*g2*y) + (3*g1^4*t^8.02)/(g2^2*y) + (3*t^8.18)/(g1^4*g2^4*y) + (4*t^8.49)/(g1*g2^7*y) + (g1^5*g2^5*t^8.52)/y + (g2^3*t^8.69)/(g1^3*y) + (g1^2*t^8.8)/(g2^10*y) - (g2*t^8.85)/(g1^11*y) - (t^4.3*y)/(g1*g2) - (t^6.58*y)/g1^6 - (t^6.89*y)/(g1^3*g2^3) - (t^7.2*y)/g2^6 + (2*g2^4*t^7.39*y)/g1^2 + 3*g1*g2*t^7.7*y + (2*t^7.87*y)/(g1^7*g2) + (3*g1^4*t^8.02*y)/g2^2 + (3*t^8.18*y)/(g1^4*g2^4) + (4*t^8.49*y)/(g1*g2^7) + g1^5*g2^5*t^8.52*y + (g2^3*t^8.69*y)/g1^3 + (g1^2*t^8.8*y)/g2^10 - (g2*t^8.85*y)/g1^11


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
189 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_1M_2$ + $ M_3\phi_1\tilde{q}_1^2$ 0.5539 0.7073 0.7832 [X:[], M:[0.9813, 1.0187, 0.7198], q:[0.5959, 0.9694], qb:[0.4228, 0.2733], phi:[0.4346]] t^2.09 + t^2.16 + 2*t^2.61 + t^2.94 + t^3.06 + t^3.39 + t^3.73 + 2*t^4.18 + t^4.25 + t^4.32 + 3*t^4.7 + 2*t^4.77 + t^5.03 + t^5.1 + t^5.14 + 3*t^5.22 + t^5.48 + 2*t^5.55 + t^5.66 + t^5.82 + 2*t^5.89 - t^6. - t^4.3/y - t^4.3*y detail