Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2988 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{3}^{2}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ 0.603 0.7637 0.7896 [M:[0.9107, 0.8036, 1.0, 0.7143, 1.2857, 0.8571], q:[0.6875, 0.4018], qb:[0.3125, 0.8839], phi:[0.4286]] [M:[[2], [-2], [0], [0], [0], [0]], q:[[-1], [-1]], qb:[[1], [1]], phi:[[0]]] 1 {a: 52947/87808, c: 67059/87808, M1: 51/56, M2: 45/56, M3: 1, M4: 5/7, M5: 9/7, M6: 6/7, q1: 11/16, q2: 45/112, qb1: 5/16, qb2: 99/112, phi1: 3/7}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{2}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{5}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{6}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$ ${}$ -1 t^2.143 + t^2.411 + 2*t^2.571 + t^2.732 + t^3. + t^3.161 + t^3.696 + t^3.857 + t^4.286 + t^4.554 + 3*t^4.714 + t^4.821 + t^4.875 + 2*t^4.982 + 5*t^5.143 + 3*t^5.304 + t^5.411 + t^5.464 + 2*t^5.571 + 2*t^5.732 + t^5.893 - t^6. + t^6.107 + 2*t^6.268 + t^6.321 + 2*t^6.429 + t^6.696 + t^6.857 + t^6.964 + t^7.125 + t^7.232 + 4*t^7.286 + 3*t^7.393 + 3*t^7.446 + 5*t^7.554 + t^7.607 + 8*t^7.714 + t^7.821 + 6*t^7.875 + t^7.982 + 3*t^8.036 + t^8.196 + 2*t^8.304 - 2*t^8.411 + 3*t^8.464 + t^8.518 - 3*t^8.571 + t^8.625 + 2*t^8.679 - 3*t^8.732 + 2*t^8.839 + t^8.893 - t^4.286/y - t^6.696/y - (2*t^6.857)/y - t^7.018/y + (2*t^7.554)/y + (4*t^7.714)/y + (2*t^7.875)/y + (2*t^7.982)/y + (3*t^8.143)/y + (3*t^8.304)/y + t^8.411/y + (3*t^8.571)/y + (3*t^8.732)/y + t^8.839/y + t^8.893/y - t^4.286*y - t^6.696*y - 2*t^6.857*y - t^7.018*y + 2*t^7.554*y + 4*t^7.714*y + 2*t^7.875*y + 2*t^7.982*y + 3*t^8.143*y + 3*t^8.304*y + t^8.411*y + 3*t^8.571*y + 3*t^8.732*y + t^8.839*y + t^8.893*y t^2.143 + t^2.411/g1^2 + 2*t^2.571 + g1^2*t^2.732 + t^3. + g1^2*t^3.161 + t^3.696/g1^2 + t^3.857 + t^4.286 + t^4.554/g1^2 + 3*t^4.714 + t^4.821/g1^4 + g1^2*t^4.875 + (2*t^4.982)/g1^2 + 5*t^5.143 + 3*g1^2*t^5.304 + t^5.411/g1^2 + g1^4*t^5.464 + 2*t^5.571 + 2*g1^2*t^5.732 + g1^4*t^5.893 - t^6. + t^6.107/g1^4 + (2*t^6.268)/g1^2 + g1^4*t^6.321 + 2*t^6.429 + t^6.696/g1^2 + t^6.857 + t^6.964/g1^4 + t^7.125/g1^2 + t^7.232/g1^6 + 4*t^7.286 + (3*t^7.393)/g1^4 + 3*g1^2*t^7.446 + (5*t^7.554)/g1^2 + g1^4*t^7.607 + 8*t^7.714 + t^7.821/g1^4 + 6*g1^2*t^7.875 + t^7.982/g1^2 + 3*g1^4*t^8.036 + g1^6*t^8.196 + 2*g1^2*t^8.304 - (2*t^8.411)/g1^2 + 3*g1^4*t^8.464 + t^8.518/g1^6 - 3*t^8.571 + g1^6*t^8.625 + (2*t^8.679)/g1^4 - 3*g1^2*t^8.732 + (2*t^8.839)/g1^2 + g1^4*t^8.893 - t^4.286/y - t^6.696/(g1^2*y) - (2*t^6.857)/y - (g1^2*t^7.018)/y + (2*t^7.554)/(g1^2*y) + (4*t^7.714)/y + (2*g1^2*t^7.875)/y + (2*t^7.982)/(g1^2*y) + (3*t^8.143)/y + (3*g1^2*t^8.304)/y + t^8.411/(g1^2*y) + (3*t^8.571)/y + (3*g1^2*t^8.732)/y + t^8.839/(g1^2*y) + (g1^4*t^8.893)/y - t^4.286*y - (t^6.696*y)/g1^2 - 2*t^6.857*y - g1^2*t^7.018*y + (2*t^7.554*y)/g1^2 + 4*t^7.714*y + 2*g1^2*t^7.875*y + (2*t^7.982*y)/g1^2 + 3*t^8.143*y + 3*g1^2*t^8.304*y + (t^8.411*y)/g1^2 + 3*t^8.571*y + 3*g1^2*t^8.732*y + (t^8.839*y)/g1^2 + g1^4*t^8.893*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1946 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{3}^{2}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ 0.5904 0.7422 0.7955 [M:[0.9107, 0.8036, 1.0, 0.7143, 1.2857], q:[0.6875, 0.4018], qb:[0.3125, 0.8839], phi:[0.4286]] t^2.143 + t^2.411 + t^2.571 + t^2.732 + t^3. + t^3.161 + t^3.429 + t^3.696 + t^3.857 + t^4.286 + t^4.554 + 2*t^4.714 + t^4.821 + t^4.875 + t^4.982 + 3*t^5.143 + 2*t^5.304 + t^5.411 + t^5.464 + 2*t^5.571 + t^5.732 + t^5.839 + t^5.893 - t^4.286/y - t^4.286*y detail {a: 51843/87808, c: 65171/87808, M1: 51/56, M2: 45/56, M3: 1, M4: 5/7, M5: 9/7, q1: 11/16, q2: 45/112, qb1: 5/16, qb2: 99/112, phi1: 3/7}