Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2943 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ q_1q_2\tilde{q}_2^2$ + $ M_6q_1\tilde{q}_2$ 0.6438 0.8465 0.7605 [X:[], M:[0.9908, 1.0275, 1.0092, 0.7569, 0.7385, 0.7569], q:[0.7477, 0.2615], qb:[0.477, 0.4954], phi:[0.5046]] [X:[], M:[[4], [-12], [-4], [-3], [5], [-3]], q:[[1], [-5]], qb:[[10], [2]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ q_2\tilde{q}_1$, $ M_4$, $ M_6$, $ q_2\tilde{q}_2$, $ M_3$, $ \phi_1^2$, $ M_2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_5^2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4M_5$, $ M_5M_6$, $ M_4q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1q_2$, $ M_4q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3M_4$, $ M_2M_5$, $ M_3M_6$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ M_5\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2M_4$, $ M_2M_6$, $ M_4\phi_1q_2^2$, $ M_6\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_5q_1\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_4q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_1$ . -4 2*t^2.22 + 3*t^2.27 + 2*t^3.03 + 2*t^3.08 + t^3.67 + t^4.38 + 4*t^4.43 + 7*t^4.49 + 6*t^4.54 + 4*t^5.24 + 9*t^5.3 + 5*t^5.35 + 2*t^5.89 + t^5.94 - 4*t^6. + 4*t^6.11 + 3*t^6.17 + 2*t^6.59 + 7*t^6.65 + 12*t^6.7 + 13*t^6.76 + 7*t^6.81 - t^6.87 + 4*t^7.46 + 15*t^7.51 + 19*t^7.57 + 9*t^7.62 + t^8.05 + 3*t^8.11 - t^8.16 - 11*t^8.22 - 12*t^8.27 + 6*t^8.33 + 14*t^8.38 + 7*t^8.44 + t^8.75 + 4*t^8.81 + 11*t^8.86 + 18*t^8.92 + 18*t^8.97 - t^4.51/y - t^6.73/y - (2*t^6.78)/y + (2*t^7.43)/y + (7*t^7.49)/y + (2*t^7.54)/y - t^7.6/y + (6*t^8.24)/y + (11*t^8.3)/y + (6*t^8.35)/y + (2*t^8.89)/y + (2*t^8.94)/y - t^4.51*y - t^6.73*y - 2*t^6.78*y + 2*t^7.43*y + 7*t^7.49*y + 2*t^7.54*y - t^7.6*y + 6*t^8.24*y + 11*t^8.3*y + 6*t^8.35*y + 2*t^8.89*y + 2*t^8.94*y 2*g1^5*t^2.22 + (3*t^2.27)/g1^3 + (2*t^3.03)/g1^4 + (2*t^3.08)/g1^12 + g1^11*t^3.67 + g1^18*t^4.38 + 4*g1^10*t^4.43 + 7*g1^2*t^4.49 + (6*t^4.54)/g1^6 + 4*g1*t^5.24 + (9*t^5.3)/g1^7 + (5*t^5.35)/g1^15 + 2*g1^16*t^5.89 + g1^8*t^5.94 - 4*t^6. + (4*t^6.11)/g1^16 + (3*t^6.17)/g1^24 + 2*g1^23*t^6.59 + 7*g1^15*t^6.65 + 12*g1^7*t^6.7 + (13*t^6.76)/g1 + (7*t^6.81)/g1^9 - t^6.87/g1^17 + 4*g1^6*t^7.46 + (15*t^7.51)/g1^2 + (19*t^7.57)/g1^10 + (9*t^7.62)/g1^18 + g1^29*t^8.05 + 3*g1^21*t^8.11 - g1^13*t^8.16 - 11*g1^5*t^8.22 - (12*t^8.27)/g1^3 + (6*t^8.33)/g1^11 + (14*t^8.38)/g1^19 + (7*t^8.44)/g1^27 + g1^36*t^8.75 + 4*g1^28*t^8.81 + 11*g1^20*t^8.86 + 18*g1^12*t^8.92 + 18*g1^4*t^8.97 - t^4.51/(g1^2*y) - (g1^3*t^6.73)/y - (2*t^6.78)/(g1^5*y) + (2*g1^10*t^7.43)/y + (7*g1^2*t^7.49)/y + (2*t^7.54)/(g1^6*y) - t^7.6/(g1^14*y) + (6*g1*t^8.24)/y + (11*t^8.3)/(g1^7*y) + (6*t^8.35)/(g1^15*y) + (2*g1^16*t^8.89)/y + (2*g1^8*t^8.94)/y - (t^4.51*y)/g1^2 - g1^3*t^6.73*y - (2*t^6.78*y)/g1^5 + 2*g1^10*t^7.43*y + 7*g1^2*t^7.49*y + (2*t^7.54*y)/g1^6 - (t^7.6*y)/g1^14 + 6*g1*t^8.24*y + (11*t^8.3*y)/g1^7 + (6*t^8.35*y)/g1^15 + 2*g1^16*t^8.89*y + 2*g1^8*t^8.94*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1910 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ q_1q_2\tilde{q}_2^2$ 0.6251 0.8126 0.7692 [X:[], M:[0.9888, 1.0335, 1.0112, 0.7584, 0.736], q:[0.7472, 0.264], qb:[0.4721, 0.4944], phi:[0.5056]] 2*t^2.21 + 2*t^2.28 + 2*t^3.03 + 2*t^3.1 + t^3.66 + t^3.72 + t^4.35 + 4*t^4.42 + 5*t^4.48 + 3*t^4.55 + 4*t^5.24 + 7*t^5.31 + 3*t^5.38 + 2*t^5.87 + 2*t^5.93 - 2*t^6. - t^4.52/y - t^4.52*y detail