Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2938 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ 0.6639 0.8812 0.7534 [M:[0.9843, 1.0472, 0.9843, 0.7461, 0.7461, 0.7775, 0.7775], q:[0.7461, 0.2697], qb:[0.4764, 0.4764], phi:[0.5079]] [M:[[4, 4], [-12, -12], [4, 4], [-5, 7], [7, -5], [-13, -1], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{7}$, ${ }M_{6}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{6}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{7}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{2}M_{7}$, ${ }M_{7}\phi_{1}q_{2}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$ ${}$ -6 4*t^2.238 + 2*t^2.333 + 2*t^2.953 + 2*t^3.142 + 3*t^4.382 + 10*t^4.476 + 8*t^4.571 + 3*t^4.665 + 8*t^5.191 + 4*t^5.285 + 6*t^5.38 + 4*t^5.474 + 2*t^5.906 - 6*t^6. + 2*t^6.094 + 3*t^6.283 + 8*t^6.62 + 22*t^6.715 + 16*t^6.809 + 10*t^6.903 + 4*t^6.998 + 3*t^7.335 + 15*t^7.429 + 14*t^7.524 + 18*t^7.618 + 12*t^7.712 + 6*t^7.807 - 2*t^8.049 + 2*t^8.144 - 20*t^8.238 - 8*t^8.333 + 4*t^8.427 + 8*t^8.521 + 6*t^8.616 + 5*t^8.764 + 16*t^8.858 + 24*t^8.953 - t^4.524/y - (2*t^6.762)/y - (2*t^6.856)/y + t^7.382/y + (5*t^7.476)/y + (9*t^7.571)/y + (10*t^8.191)/y + (6*t^8.285)/y + (8*t^8.38)/y + (4*t^8.474)/y + t^8.906/y - t^4.524*y - 2*t^6.762*y - 2*t^6.856*y + t^7.382*y + 5*t^7.476*y + 9*t^7.571*y + 10*t^8.191*y + 6*t^8.285*y + 8*t^8.38*y + 4*t^8.474*y + t^8.906*y (2*g1^7*t^2.238)/g2^5 + (2*g2^7*t^2.238)/g1^5 + t^2.333/(g1*g2^13) + t^2.333/(g1^13*g2) + 2*g1^4*g2^4*t^2.953 + (2*t^3.142)/(g1^12*g2^12) + (g1^22*t^4.382)/g2^2 + g1^10*g2^10*t^4.382 + (g2^22*t^4.382)/g1^2 + (3*g1^14*t^4.476)/g2^10 + 4*g1^2*g2^2*t^4.476 + (3*g2^14*t^4.476)/g1^10 + (2*g1^6*t^4.571)/g2^18 + (4*t^4.571)/(g1^6*g2^6) + (2*g2^6*t^4.571)/g1^18 + t^4.665/(g1^2*g2^26) + t^4.665/(g1^14*g2^14) + t^4.665/(g1^26*g2^2) + (4*g1^11*t^5.191)/g2 + (4*g2^11*t^5.191)/g1 + (2*g1^3*t^5.285)/g2^9 + (2*g2^3*t^5.285)/g1^9 + (3*t^5.38)/(g1^5*g2^17) + (3*t^5.38)/(g1^17*g2^5) + (2*t^5.474)/(g1^13*g2^25) + (2*t^5.474)/(g1^25*g2^13) + 2*g1^8*g2^8*t^5.906 - 4*t^6. - (g1^12*t^6.)/g2^12 - (g2^12*t^6.)/g1^12 + (2*t^6.094)/(g1^8*g2^8) + (3*t^6.283)/(g1^24*g2^24) + (2*g1^29*t^6.62)/g2^7 + 2*g1^17*g2^5*t^6.62 + 2*g1^5*g2^17*t^6.62 + (2*g2^29*t^6.62)/g1^7 + (5*g1^21*t^6.715)/g2^15 + (6*g1^9*t^6.715)/g2^3 + (6*g2^9*t^6.715)/g1^3 + (5*g2^21*t^6.715)/g1^15 + (3*g1^13*t^6.809)/g2^23 + (5*g1*t^6.809)/g2^11 + (5*g2*t^6.809)/g1^11 + (3*g2^13*t^6.809)/g1^23 + (2*g1^5*t^6.903)/g2^31 + (3*t^6.903)/(g1^7*g2^19) + (3*t^6.903)/(g1^19*g2^7) + (2*g2^5*t^6.903)/g1^31 + t^6.998/(g1^3*g2^39) + t^6.998/(g1^15*g2^27) + t^6.998/(g1^27*g2^15) + t^6.998/(g1^39*g2^3) + g1^26*g2^2*t^7.335 + g1^14*g2^14*t^7.335 + g1^2*g2^26*t^7.335 + (5*g1^18*t^7.429)/g2^6 + 5*g1^6*g2^6*t^7.429 + (5*g2^18*t^7.429)/g1^6 + (4*g1^10*t^7.524)/g2^14 + (6*t^7.524)/(g1^2*g2^2) + (4*g2^10*t^7.524)/g1^14 + (6*g1^2*t^7.618)/g2^22 + (6*t^7.618)/(g1^10*g2^10) + (6*g2^2*t^7.618)/g1^22 + (3*t^7.712)/(g1^6*g2^30) + (6*t^7.712)/(g1^18*g2^18) + (3*t^7.712)/(g1^30*g2^6) + (2*t^7.807)/(g1^14*g2^38) + (2*t^7.807)/(g1^26*g2^26) + (2*t^7.807)/(g1^38*g2^14) - g1^23*g2^11*t^8.049 - g1^11*g2^23*t^8.049 + g1^15*g2^3*t^8.144 + g1^3*g2^15*t^8.144 - (2*g1^19*t^8.238)/g2^17 - (8*g1^7*t^8.238)/g2^5 - (8*g2^7*t^8.238)/g1^5 - (2*g2^19*t^8.238)/g1^17 - (g1^11*t^8.333)/g2^25 - (3*t^8.333)/(g1*g2^13) - (3*t^8.333)/(g1^13*g2) - (g2^11*t^8.333)/g1^25 + (2*t^8.427)/(g1^9*g2^21) + (2*t^8.427)/(g1^21*g2^9) + (4*t^8.521)/(g1^17*g2^29) + (4*t^8.521)/(g1^29*g2^17) + (3*t^8.616)/(g1^25*g2^37) + (3*t^8.616)/(g1^37*g2^25) + (g1^44*t^8.764)/g2^4 + g1^32*g2^8*t^8.764 + g1^20*g2^20*t^8.764 + g1^8*g2^32*t^8.764 + (g2^44*t^8.764)/g1^4 + 3*g1^24*t^8.858 + (3*g1^36*t^8.858)/g2^12 + 4*g1^12*g2^12*t^8.858 + 3*g2^24*t^8.858 + (3*g2^36*t^8.858)/g1^12 + (7*g1^28*t^8.953)/g2^20 + (6*g1^16*t^8.953)/g2^8 - 2*g1^4*g2^4*t^8.953 + (6*g2^16*t^8.953)/g1^8 + (7*g2^28*t^8.953)/g1^20 - t^4.524/(g1^2*g2^2*y) - (g1^5*t^6.762)/(g2^7*y) - (g2^5*t^6.762)/(g1^7*y) - t^6.856/(g1^3*g2^15*y) - t^6.856/(g1^15*g2^3*y) + (g1^10*g2^10*t^7.382)/y + (g1^14*t^7.476)/(g2^10*y) + (3*g1^2*g2^2*t^7.476)/y + (g2^14*t^7.476)/(g1^10*y) + (2*g1^6*t^7.571)/(g2^18*y) + (5*t^7.571)/(g1^6*g2^6*y) + (2*g2^6*t^7.571)/(g1^18*y) + (5*g1^11*t^8.191)/(g2*y) + (5*g2^11*t^8.191)/(g1*y) + (3*g1^3*t^8.285)/(g2^9*y) + (3*g2^3*t^8.285)/(g1^9*y) + (4*t^8.38)/(g1^5*g2^17*y) + (4*t^8.38)/(g1^17*g2^5*y) + (2*t^8.474)/(g1^13*g2^25*y) + (2*t^8.474)/(g1^25*g2^13*y) + (g1^8*g2^8*t^8.906)/y - (t^4.524*y)/(g1^2*g2^2) - (g1^5*t^6.762*y)/g2^7 - (g2^5*t^6.762*y)/g1^7 - (t^6.856*y)/(g1^3*g2^15) - (t^6.856*y)/(g1^15*g2^3) + g1^10*g2^10*t^7.382*y + (g1^14*t^7.476*y)/g2^10 + 3*g1^2*g2^2*t^7.476*y + (g2^14*t^7.476*y)/g1^10 + (2*g1^6*t^7.571*y)/g2^18 + (5*t^7.571*y)/(g1^6*g2^6) + (2*g2^6*t^7.571*y)/g1^18 + (5*g1^11*t^8.191*y)/g2 + (5*g2^11*t^8.191*y)/g1 + (3*g1^3*t^8.285*y)/g2^9 + (3*g2^3*t^8.285*y)/g1^9 + (4*t^8.38*y)/(g1^5*g2^17) + (4*t^8.38*y)/(g1^17*g2^5) + (2*t^8.474*y)/(g1^13*g2^25) + (2*t^8.474*y)/(g1^25*g2^13) + g1^8*g2^8*t^8.906*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1907 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ 0.6468 0.851 0.76 [M:[0.9767, 1.07, 0.9767, 0.7324, 0.7559, 0.7791], q:[0.7442, 0.2792], qb:[0.4768, 0.4533], phi:[0.5117]] 2*t^2.197 + 2*t^2.268 + t^2.337 + 2*t^2.93 + 2*t^3.21 + t^3.592 + t^4.255 + t^4.325 + 3*t^4.395 + t^4.396 + 4*t^4.465 + 2*t^4.534 + 3*t^4.536 + 2*t^4.605 + t^4.674 + 4*t^5.127 + 4*t^5.198 + 2*t^5.267 + 3*t^5.407 + 3*t^5.478 + 2*t^5.547 + 2*t^5.79 + 4*t^5.86 - 4*t^6. - t^4.535/y - t^4.535*y detail