Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2938 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ + $ M_7q_1\tilde{q}_2$ 0.6639 0.8812 0.7534 [X:[], M:[0.9843, 1.0472, 0.9843, 0.7461, 0.7461, 0.7775, 0.7775], q:[0.7461, 0.2697], qb:[0.4764, 0.4764], phi:[0.5079]] [X:[], M:[[4, 4], [-12, -12], [4, 4], [-5, 7], [7, -5], [-13, -1], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ q_2\tilde{q}_1$, $ M_4$, $ q_2\tilde{q}_2$, $ M_7$, $ M_6$, $ M_1$, $ M_3$, $ M_2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_4M_5$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5M_7$, $ M_7q_2\tilde{q}_1$, $ M_5M_6$, $ M_4M_7$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ M_4M_6$, $ M_6q_2\tilde{q}_2$, $ M_7^2$, $ M_6M_7$, $ M_6^2$, $ M_1M_5$, $ M_3M_5$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_1M_4$, $ M_3M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1M_7$, $ M_3M_7$, $ M_1M_6$, $ M_3M_6$, $ M_2M_5$, $ M_5\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_2M_4$, $ M_4\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_2M_7$, $ M_7\phi_1q_2^2$, $ M_2M_6$, $ M_6\phi_1q_2^2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$ . -6 4*t^2.24 + 2*t^2.33 + 2*t^2.95 + 2*t^3.14 + 3*t^4.38 + 10*t^4.48 + 8*t^4.57 + 3*t^4.67 + 8*t^5.19 + 4*t^5.29 + 6*t^5.38 + 4*t^5.47 + 2*t^5.91 - 6*t^6. + 2*t^6.09 + 3*t^6.28 + 8*t^6.62 + 22*t^6.71 + 16*t^6.81 + 10*t^6.9 + 4*t^7. + 3*t^7.33 + 15*t^7.43 + 14*t^7.52 + 18*t^7.62 + 12*t^7.71 + 6*t^7.81 - 2*t^8.05 + 2*t^8.14 - 20*t^8.24 - 8*t^8.33 + 4*t^8.43 + 8*t^8.52 + 6*t^8.62 + 5*t^8.76 + 16*t^8.86 + 24*t^8.95 - t^4.52/y - (2*t^6.76)/y - (2*t^6.86)/y + t^7.38/y + (5*t^7.48)/y + (9*t^7.57)/y + (10*t^8.19)/y + (6*t^8.29)/y + (8*t^8.38)/y + (4*t^8.47)/y + t^8.91/y - t^4.52*y - 2*t^6.76*y - 2*t^6.86*y + t^7.38*y + 5*t^7.48*y + 9*t^7.57*y + 10*t^8.19*y + 6*t^8.29*y + 8*t^8.38*y + 4*t^8.47*y + t^8.91*y (2*g1^7*t^2.24)/g2^5 + (2*g2^7*t^2.24)/g1^5 + t^2.33/(g1*g2^13) + t^2.33/(g1^13*g2) + 2*g1^4*g2^4*t^2.95 + (2*t^3.14)/(g1^12*g2^12) + (g1^22*t^4.38)/g2^2 + g1^10*g2^10*t^4.38 + (g2^22*t^4.38)/g1^2 + (3*g1^14*t^4.48)/g2^10 + 4*g1^2*g2^2*t^4.48 + (3*g2^14*t^4.48)/g1^10 + (2*g1^6*t^4.57)/g2^18 + (4*t^4.57)/(g1^6*g2^6) + (2*g2^6*t^4.57)/g1^18 + t^4.67/(g1^2*g2^26) + t^4.67/(g1^14*g2^14) + t^4.67/(g1^26*g2^2) + (4*g1^11*t^5.19)/g2 + (4*g2^11*t^5.19)/g1 + (2*g1^3*t^5.29)/g2^9 + (2*g2^3*t^5.29)/g1^9 + (3*t^5.38)/(g1^5*g2^17) + (3*t^5.38)/(g1^17*g2^5) + (2*t^5.47)/(g1^13*g2^25) + (2*t^5.47)/(g1^25*g2^13) + 2*g1^8*g2^8*t^5.91 - 4*t^6. - (g1^12*t^6.)/g2^12 - (g2^12*t^6.)/g1^12 + (2*t^6.09)/(g1^8*g2^8) + (3*t^6.28)/(g1^24*g2^24) + (2*g1^29*t^6.62)/g2^7 + 2*g1^17*g2^5*t^6.62 + 2*g1^5*g2^17*t^6.62 + (2*g2^29*t^6.62)/g1^7 + (5*g1^21*t^6.71)/g2^15 + (6*g1^9*t^6.71)/g2^3 + (6*g2^9*t^6.71)/g1^3 + (5*g2^21*t^6.71)/g1^15 + (3*g1^13*t^6.81)/g2^23 + (5*g1*t^6.81)/g2^11 + (5*g2*t^6.81)/g1^11 + (3*g2^13*t^6.81)/g1^23 + (2*g1^5*t^6.9)/g2^31 + (3*t^6.9)/(g1^7*g2^19) + (3*t^6.9)/(g1^19*g2^7) + (2*g2^5*t^6.9)/g1^31 + t^7./(g1^3*g2^39) + t^7./(g1^15*g2^27) + t^7./(g1^27*g2^15) + t^7./(g1^39*g2^3) + g1^26*g2^2*t^7.33 + g1^14*g2^14*t^7.33 + g1^2*g2^26*t^7.33 + (5*g1^18*t^7.43)/g2^6 + 5*g1^6*g2^6*t^7.43 + (5*g2^18*t^7.43)/g1^6 + (4*g1^10*t^7.52)/g2^14 + (6*t^7.52)/(g1^2*g2^2) + (4*g2^10*t^7.52)/g1^14 + (6*g1^2*t^7.62)/g2^22 + (6*t^7.62)/(g1^10*g2^10) + (6*g2^2*t^7.62)/g1^22 + (3*t^7.71)/(g1^6*g2^30) + (6*t^7.71)/(g1^18*g2^18) + (3*t^7.71)/(g1^30*g2^6) + (2*t^7.81)/(g1^14*g2^38) + (2*t^7.81)/(g1^26*g2^26) + (2*t^7.81)/(g1^38*g2^14) - g1^23*g2^11*t^8.05 - g1^11*g2^23*t^8.05 + g1^15*g2^3*t^8.14 + g1^3*g2^15*t^8.14 - (2*g1^19*t^8.24)/g2^17 - (8*g1^7*t^8.24)/g2^5 - (8*g2^7*t^8.24)/g1^5 - (2*g2^19*t^8.24)/g1^17 - (g1^11*t^8.33)/g2^25 - (3*t^8.33)/(g1*g2^13) - (3*t^8.33)/(g1^13*g2) - (g2^11*t^8.33)/g1^25 + (2*t^8.43)/(g1^9*g2^21) + (2*t^8.43)/(g1^21*g2^9) + (4*t^8.52)/(g1^17*g2^29) + (4*t^8.52)/(g1^29*g2^17) + (3*t^8.62)/(g1^25*g2^37) + (3*t^8.62)/(g1^37*g2^25) + (g1^44*t^8.76)/g2^4 + g1^32*g2^8*t^8.76 + g1^20*g2^20*t^8.76 + g1^8*g2^32*t^8.76 + (g2^44*t^8.76)/g1^4 + 3*g1^24*t^8.86 + (3*g1^36*t^8.86)/g2^12 + 4*g1^12*g2^12*t^8.86 + 3*g2^24*t^8.86 + (3*g2^36*t^8.86)/g1^12 + (7*g1^28*t^8.95)/g2^20 + (6*g1^16*t^8.95)/g2^8 - 2*g1^4*g2^4*t^8.95 + (6*g2^16*t^8.95)/g1^8 + (7*g2^28*t^8.95)/g1^20 - t^4.52/(g1^2*g2^2*y) - (g1^5*t^6.76)/(g2^7*y) - (g2^5*t^6.76)/(g1^7*y) - t^6.86/(g1^3*g2^15*y) - t^6.86/(g1^15*g2^3*y) + (g1^10*g2^10*t^7.38)/y + (g1^14*t^7.48)/(g2^10*y) + (3*g1^2*g2^2*t^7.48)/y + (g2^14*t^7.48)/(g1^10*y) + (2*g1^6*t^7.57)/(g2^18*y) + (5*t^7.57)/(g1^6*g2^6*y) + (2*g2^6*t^7.57)/(g1^18*y) + (5*g1^11*t^8.19)/(g2*y) + (5*g2^11*t^8.19)/(g1*y) + (3*g1^3*t^8.29)/(g2^9*y) + (3*g2^3*t^8.29)/(g1^9*y) + (4*t^8.38)/(g1^5*g2^17*y) + (4*t^8.38)/(g1^17*g2^5*y) + (2*t^8.47)/(g1^13*g2^25*y) + (2*t^8.47)/(g1^25*g2^13*y) + (g1^8*g2^8*t^8.91)/y - (t^4.52*y)/(g1^2*g2^2) - (g1^5*t^6.76*y)/g2^7 - (g2^5*t^6.76*y)/g1^7 - (t^6.86*y)/(g1^3*g2^15) - (t^6.86*y)/(g1^15*g2^3) + g1^10*g2^10*t^7.38*y + (g1^14*t^7.48*y)/g2^10 + 3*g1^2*g2^2*t^7.48*y + (g2^14*t^7.48*y)/g1^10 + (2*g1^6*t^7.57*y)/g2^18 + (5*t^7.57*y)/(g1^6*g2^6) + (2*g2^6*t^7.57*y)/g1^18 + (5*g1^11*t^8.19*y)/g2 + (5*g2^11*t^8.19*y)/g1 + (3*g1^3*t^8.29*y)/g2^9 + (3*g2^3*t^8.29*y)/g1^9 + (4*t^8.38*y)/(g1^5*g2^17) + (4*t^8.38*y)/(g1^17*g2^5) + (2*t^8.47*y)/(g1^13*g2^25) + (2*t^8.47*y)/(g1^25*g2^13) + g1^8*g2^8*t^8.91*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1907 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ 0.6468 0.851 0.76 [X:[], M:[0.9767, 1.07, 0.9767, 0.7324, 0.7559, 0.7791], q:[0.7442, 0.2792], qb:[0.4768, 0.4533], phi:[0.5117]] 2*t^2.2 + 2*t^2.27 + t^2.34 + 2*t^2.93 + 2*t^3.21 + t^3.59 + t^4.25 + t^4.33 + 3*t^4.39 + t^4.4 + 4*t^4.47 + 2*t^4.53 + 3*t^4.54 + 2*t^4.6 + t^4.67 + 4*t^5.13 + 4*t^5.2 + 2*t^5.27 + 3*t^5.41 + 3*t^5.48 + 2*t^5.55 + 2*t^5.79 + 4*t^5.86 - 4*t^6. - t^4.53/y - t^4.53*y detail