Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2922 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.6147 0.8068 0.7619 [M:[0.9267, 1.2198, 0.9267, 0.7802, 0.9267, 0.8297], q:[0.7317, 0.3416], qb:[0.3416, 0.4386], phi:[0.5366]] [M:[[4], [-12], [4], [12], [4], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{6}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}$ ${}M_{2}M_{4}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1 t^2.05 + 2*t^2.341 + t^2.489 + 3*t^2.78 + 3*t^3.659 + 2*t^3.95 + t^4.099 + t^4.241 + 2*t^4.39 + t^4.539 + 3*t^4.681 + 5*t^4.83 + t^4.978 + 6*t^5.121 + 3*t^5.269 + 5*t^5.56 + t^5.709 + t^6. + 4*t^6.149 + 2*t^6.291 + 8*t^6.44 + 2*t^6.582 + t^6.588 + 7*t^6.731 + 2*t^6.879 + 6*t^7.022 + t^7.028 + 3*t^7.17 + 8*t^7.319 + 7*t^7.461 + t^7.468 + 9*t^7.61 + 4*t^7.759 + 10*t^7.901 + 2*t^8.05 + 2*t^8.192 + 2*t^8.198 + 4*t^8.341 + t^8.483 + t^8.489 + 2*t^8.632 + 4*t^8.638 - 3*t^8.78 + 3*t^8.923 + 9*t^8.929 - t^4.61/y - t^7.099/y + t^7.539/y + t^7.681/y + (7*t^7.83)/y + (7*t^8.121)/y + (3*t^8.269)/y + (3*t^8.56)/y + (3*t^8.709)/y - t^4.61*y - t^7.099*y + t^7.539*y + t^7.681*y + 7*t^7.83*y + 7*t^8.121*y + 3*t^8.269*y + 3*t^8.56*y + 3*t^8.709*y t^2.05/g1^10 + 2*g1^12*t^2.341 + t^2.489/g1^18 + 3*g1^4*t^2.78 + (3*t^3.659)/g1^12 + 2*g1^10*t^3.95 + t^4.099/g1^20 + g1^32*t^4.241 + 2*g1^2*t^4.39 + t^4.539/g1^28 + 3*g1^24*t^4.681 + (5*t^4.83)/g1^6 + t^4.978/g1^36 + 6*g1^16*t^5.121 + (3*t^5.269)/g1^14 + 5*g1^8*t^5.56 + t^5.709/g1^22 + t^6. + (4*t^6.149)/g1^30 + 2*g1^22*t^6.291 + (8*t^6.44)/g1^8 + 2*g1^44*t^6.582 + t^6.588/g1^38 + 7*g1^14*t^6.731 + (2*t^6.879)/g1^16 + 6*g1^36*t^7.022 + t^7.028/g1^46 + 3*g1^6*t^7.17 + (8*t^7.319)/g1^24 + 7*g1^28*t^7.461 + t^7.468/g1^54 + (9*t^7.61)/g1^2 + (4*t^7.759)/g1^32 + 10*g1^20*t^7.901 + (2*t^8.05)/g1^10 + 2*g1^42*t^8.192 + (2*t^8.198)/g1^40 + 4*g1^12*t^8.341 + g1^64*t^8.483 + t^8.489/g1^18 + 2*g1^34*t^8.632 + (4*t^8.638)/g1^48 - 3*g1^4*t^8.78 + 3*g1^56*t^8.923 + (9*t^8.929)/g1^26 - t^4.61/(g1^2*y) - t^7.099/(g1^20*y) + t^7.539/(g1^28*y) + (g1^24*t^7.681)/y + (7*t^7.83)/(g1^6*y) + (7*g1^16*t^8.121)/y + (3*t^8.269)/(g1^14*y) + (3*g1^8*t^8.56)/y + (3*t^8.709)/(g1^22*y) - (t^4.61*y)/g1^2 - (t^7.099*y)/g1^20 + (t^7.539*y)/g1^28 + g1^24*t^7.681*y + (7*t^7.83*y)/g1^6 + 7*g1^16*t^8.121*y + (3*t^8.269*y)/g1^14 + 3*g1^8*t^8.56*y + (3*t^8.709*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1897 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ 0.6013 0.7852 0.7658 [M:[0.9195, 1.2415, 0.9195, 0.7585, 0.9195], q:[0.7299, 0.3506], qb:[0.3506, 0.4078], phi:[0.5403]] t^2.104 + 2*t^2.275 + 3*t^2.758 + t^3.413 + 3*t^3.725 + 2*t^3.896 + t^4.068 + t^4.208 + 2*t^4.379 + 3*t^4.551 + 3*t^4.862 + 6*t^5.034 + 6*t^5.517 + 2*t^5.689 + t^5.828 + t^6. - t^4.621/y - t^4.621*y detail