Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2895 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_3M_5$ + $ M_3M_6$ + $ \phi_1q_1^2$ + $ M_4M_7$ 0.6803 0.8266 0.823 [X:[], M:[0.6781, 1.1461, 1.0298, 0.7376, 0.9702, 0.9702, 1.2624], q:[0.7865, 0.5354], qb:[0.4759, 0.4944], phi:[0.427]] [X:[], M:[[1, 15], [0, -4], [-1, -7], [-1, 1], [1, 7], [1, 7], [1, -1]], q:[[0, -1], [-1, -14]], qb:[[1, 0], [0, 7]], phi:[[0, 2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_5$, $ M_6$, $ q_2\tilde{q}_1$, $ M_2$, $ M_7$, $ q_1\tilde{q}_2$, $ M_1^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ M_1M_5$, $ M_1M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_1M_2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_1M_7$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$ . -3 t^2.03 + 2*t^2.91 + t^3.03 + t^3.44 + t^3.79 + t^3.84 + t^4.07 + t^4.14 + t^4.19 + t^4.25 + t^4.31 + t^4.37 + t^4.49 + 2*t^4.95 + t^5.07 + t^5.47 + 3*t^5.82 + t^5.94 - 3*t^6. - t^6.06 + t^6.07 + t^6.1 - t^6.12 + t^6.17 - t^6.18 + t^6.23 + t^6.28 + 2*t^6.35 + t^6.47 + 2*t^6.7 + t^6.75 + t^6.82 - t^6.93 + 2*t^6.98 + 2*t^7.05 + 2*t^7.1 + t^7.16 + t^7.17 + 2*t^7.23 + t^7.28 - t^7.34 + t^7.35 + t^7.4 - t^7.46 + t^7.51 + t^7.53 + t^7.57 + t^7.63 + t^7.69 + 3*t^7.86 + t^7.92 + 2*t^7.98 - 2*t^8.03 + t^8.1 + t^8.14 - t^8.16 + t^8.2 - t^8.21 + t^8.26 + t^8.27 + t^8.32 + t^8.33 + 3*t^8.38 + t^8.44 + t^8.45 + t^8.49 + t^8.51 + t^8.62 + t^8.63 + 4*t^8.73 + t^8.74 + t^8.81 + 2*t^8.86 - 6*t^8.91 - 2*t^8.97 + t^8.98 + t^8.99 - t^4.28/y - t^6.32/y - t^7.19/y + t^7.37/y + (2*t^7.95)/y + t^8.07/y + t^8.25/y - t^8.35/y + t^8.47/y + (2*t^8.82)/y + t^8.88/y + (2*t^8.94)/y - t^4.28*y - t^6.32*y - t^7.19*y + t^7.37*y + 2*t^7.95*y + t^8.07*y + t^8.25*y - t^8.35*y + t^8.47*y + 2*t^8.82*y + t^8.88*y + 2*t^8.94*y g1*g2^15*t^2.03 + 2*g1*g2^7*t^2.91 + t^3.03/g2^14 + t^3.44/g2^4 + (g1*t^3.79)/g2 + g2^6*t^3.84 + g1^2*g2^30*t^4.07 + g1^2*g2^2*t^4.14 + g1*g2^9*t^4.19 + g2^16*t^4.25 + t^4.31/g2^12 + t^4.37/(g1*g2^5) + t^4.49/(g1^2*g2^26) + 2*g1^2*g2^22*t^4.95 + g1*g2*t^5.07 + g1*g2^11*t^5.47 + 3*g1^2*g2^14*t^5.82 + (g1*t^5.94)/g2^7 - 3*t^6. - (g2^7*t^6.06)/g1 + t^6.07/g2^28 + g1^3*g2^45*t^6.1 - t^6.12/(g1*g2^21) + g1^3*g2^17*t^6.17 - t^6.18/(g1^2*g2^14) + g1^2*g2^24*t^6.23 + g1*g2^31*t^6.28 + 2*g1*g2^3*t^6.35 + t^6.47/g2^18 + 2*g1^2*g2^6*t^6.7 + g1*g2^13*t^6.75 + (g1*t^6.82)/g2^15 - t^6.93/(g1*g2) + 2*g1^3*g2^37*t^6.98 + 2*g1^3*g2^9*t^7.05 + 2*g1^2*g2^16*t^7.1 + g1*g2^23*t^7.16 + (g1^2*t^7.17)/g2^12 + (2*g1*t^7.23)/g2^5 + g2^2*t^7.28 - (g2^9*t^7.34)/g1 + t^7.35/g2^26 + t^7.4/(g1*g2^19) - t^7.46/(g1^2*g2^12) + g1^2*g2^26*t^7.51 + t^7.53/(g1^2*g2^40) + (g1^2*t^7.57)/g2^2 + g1*g2^5*t^7.63 + g2^12*t^7.69 + 3*g1^3*g2^29*t^7.86 + g1^3*g2*t^7.92 + 2*g1^2*g2^8*t^7.98 - 2*g1*g2^15*t^8.03 + (g1*t^8.1)/g2^13 + g1^4*g2^60*t^8.14 - t^8.16/g2^6 + g1^4*g2^32*t^8.2 - (g2*t^8.21)/g1 + g1^3*g2^39*t^8.26 + g1^4*g2^4*t^8.27 + g1^2*g2^46*t^8.32 + g1^3*g2^11*t^8.33 + 3*g1^2*g2^18*t^8.38 + g1*g2^25*t^8.44 + (g1^2*t^8.45)/g2^10 + g2^32*t^8.49 + (g1*t^8.51)/g2^3 + (g2^11*t^8.62)/g1 + t^8.63/g2^24 + 4*g1^3*g2^21*t^8.73 + t^8.74/(g1^2*g2^10) + t^8.81/(g1^2*g2^38) + g1^2*t^8.86 + t^8.86/(g1^3*g2^31) - 6*g1*g2^7*t^8.91 - 2*g2^14*t^8.97 + (g1*t^8.98)/g2^21 + t^8.99/(g1^4*g2^52) - (g2^2*t^4.28)/y - (g1*g2^17*t^6.32)/y - (g1*g2^9*t^7.19)/y + t^7.37/(g1*g2^5*y) + (2*g1^2*g2^22*t^7.95)/y + (g1*g2*t^8.07)/y + t^8.25/(g1*g2^13*y) - (g1^2*g2^32*t^8.35)/y + (g1*g2^11*t^8.47)/y + (2*g1^2*g2^14*t^8.82)/y + (g1*g2^21*t^8.88)/y + (2*g1*t^8.94)/(g2^7*y) - g2^2*t^4.28*y - g1*g2^17*t^6.32*y - g1*g2^9*t^7.19*y + (t^7.37*y)/(g1*g2^5) + 2*g1^2*g2^22*t^7.95*y + g1*g2*t^8.07*y + (t^8.25*y)/(g1*g2^13) - g1^2*g2^32*t^8.35*y + g1*g2^11*t^8.47*y + 2*g1^2*g2^14*t^8.82*y + g1*g2^21*t^8.88*y + (2*g1*t^8.94*y)/g2^7


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1880 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_3M_5$ + $ M_3M_6$ + $ \phi_1q_1^2$ 0.7001 0.8624 0.8118 [X:[], M:[0.6791, 1.1496, 1.0217, 0.7225, 0.9783, 0.9783], q:[0.7874, 0.5335], qb:[0.4901, 0.4882], phi:[0.4252]] t^2.04 + t^2.17 + 2*t^2.93 + t^3.07 + t^3.45 + t^3.83 + t^4.07 + 2*t^4.2 + t^4.21 + t^4.22 + t^4.33 + t^4.34 + t^4.35 + t^4.48 + 2*t^4.97 + 2*t^5.1 + t^5.11 + t^5.24 + t^5.49 + t^5.62 + 2*t^5.87 - 3*t^6. - t^4.28/y - t^4.28*y detail