Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2882 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ + $ M_7q_1\tilde{q}_2$ | 0.6698 | 0.8933 | 0.7498 | [X:[], M:[1.0, 1.0506, 0.8987, 0.7373, 0.7373, 0.6867, 0.6867], q:[0.7627, 0.2373], qb:[0.5506, 0.5506], phi:[0.4747]] | [X:[], M:[[0, 0], [4, 4], [-8, -8], [-5, 3], [3, -5], [-9, -1], [-1, -9]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_6$, $ M_5$, $ M_4$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_3$, $ \phi_1q_2^2$, $ M_1$, $ M_2$, $ M_7^2$, $ M_6M_7$, $ M_6^2$, $ M_5M_7$, $ M_5M_6$, $ M_4M_7$, $ M_4M_6$, $ M_5^2$, $ M_7q_2\tilde{q}_1$, $ M_4M_5$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ M_4^2$, $ M_6q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_7$, $ M_3M_6$, $ M_3M_5$, $ M_7\phi_1q_2^2$, $ M_3M_4$, $ M_6\phi_1q_2^2$, $ M_1M_7$, $ M_5\phi_1q_2^2$, $ M_1M_6$, $ M_4\phi_1q_2^2$, $ M_1M_5$, $ M_2M_7$, $ \phi_1q_2^3\tilde{q}_1$, $ M_1M_4$, $ M_2M_6$, $ \phi_1q_2^3\tilde{q}_2$, $ M_2M_5$, $ \phi_1q_1\tilde{q}_1$, $ M_2M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_3^2$, $ M_2q_2\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_3\phi_1q_2^2$, $ M_1M_3$, $ \phi_1^2q_2^4$, $ M_2M_3$ | . | -4 | 2*t^2.06 + 2*t^2.21 + 2*t^2.36 + t^2.7 + t^2.85 + t^3. + t^3.15 + 3*t^4.12 + 4*t^4.27 + 7*t^4.42 + 4*t^4.58 + 6*t^4.73 + 2*t^4.76 + 4*t^4.91 + 4*t^5.06 + 6*t^5.21 + 4*t^5.36 + t^5.39 + 2*t^5.52 + t^5.54 + 2*t^5.7 + t^5.85 - 4*t^6. + 4*t^6.18 + 6*t^6.33 + 10*t^6.48 + 10*t^6.64 + 14*t^6.79 + 3*t^6.82 + 8*t^6.94 + 7*t^6.97 + 8*t^7.09 + 10*t^7.12 + 14*t^7.27 + 13*t^7.42 + 2*t^7.45 + 12*t^7.58 + 4*t^7.6 + 6*t^7.73 + 6*t^7.76 + 3*t^7.88 + 6*t^7.91 - 4*t^8.06 + t^8.09 - 8*t^8.21 + 6*t^8.24 - 10*t^8.36 + 10*t^8.39 - 4*t^8.52 + 15*t^8.54 - 2*t^8.67 + 11*t^8.7 + 18*t^8.85 + 4*t^8.88 - t^4.42/y - (2*t^6.48)/y - (2*t^6.64)/y + (4*t^7.27)/y + (5*t^7.42)/y + (4*t^7.58)/y + (2*t^7.73)/y + (2*t^7.76)/y + (4*t^7.91)/y + (6*t^8.06)/y + (8*t^8.21)/y + (6*t^8.36)/y + (2*t^8.52)/y - (2*t^8.54)/y - (3*t^8.7)/y - t^8.85/y - t^4.42*y - 2*t^6.48*y - 2*t^6.64*y + 4*t^7.27*y + 5*t^7.42*y + 4*t^7.58*y + 2*t^7.73*y + 2*t^7.76*y + 4*t^7.91*y + 6*t^8.06*y + 8*t^8.21*y + 6*t^8.36*y + 2*t^8.52*y - 2*t^8.54*y - 3*t^8.7*y - t^8.85*y | t^2.06/(g1*g2^9) + t^2.06/(g1^9*g2) + (g1^3*t^2.21)/g2^5 + (g2^3*t^2.21)/g1^5 + (g1^7*t^2.36)/g2 + (g2^7*t^2.36)/g1 + t^2.7/(g1^8*g2^8) + t^2.85/(g1^4*g2^4) + t^3. + g1^4*g2^4*t^3.15 + t^4.12/(g1^2*g2^18) + t^4.12/(g1^10*g2^10) + t^4.12/(g1^18*g2^2) + (g1^2*t^4.27)/g2^14 + (2*t^4.27)/(g1^6*g2^6) + (g2^2*t^4.27)/g1^14 + (2*g1^6*t^4.42)/g2^10 + (3*t^4.42)/(g1^2*g2^2) + (2*g2^6*t^4.42)/g1^10 + (g1^10*t^4.58)/g2^6 + 2*g1^2*g2^2*t^4.58 + (g2^10*t^4.58)/g1^6 + (2*g1^14*t^4.73)/g2^2 + 2*g1^6*g2^6*t^4.73 + (2*g2^14*t^4.73)/g1^2 + t^4.76/(g1^9*g2^17) + t^4.76/(g1^17*g2^9) + (2*t^4.91)/(g1^5*g2^13) + (2*t^4.91)/(g1^13*g2^5) + (2*t^5.06)/(g1*g2^9) + (2*t^5.06)/(g1^9*g2) + (3*g1^3*t^5.21)/g2^5 + (3*g2^3*t^5.21)/g1^5 + (2*g1^7*t^5.36)/g2 + (2*g2^7*t^5.36)/g1 + t^5.39/(g1^16*g2^16) + g1^11*g2^3*t^5.52 + g1^3*g2^11*t^5.52 + t^5.54/(g1^12*g2^12) + (2*t^5.7)/(g1^8*g2^8) + t^5.85/(g1^4*g2^4) - 2*t^6. - (g1^8*t^6.)/g2^8 - (g2^8*t^6.)/g1^8 + t^6.18/(g1^3*g2^27) + t^6.18/(g1^11*g2^19) + t^6.18/(g1^19*g2^11) + t^6.18/(g1^27*g2^3) + (g1*t^6.33)/g2^23 + (2*t^6.33)/(g1^7*g2^15) + (2*t^6.33)/(g1^15*g2^7) + (g2*t^6.33)/g1^23 + (2*g1^5*t^6.48)/g2^19 + (3*t^6.48)/(g1^3*g2^11) + (3*t^6.48)/(g1^11*g2^3) + (2*g2^5*t^6.48)/g1^19 + (2*g1^9*t^6.64)/g2^15 + (3*g1*t^6.64)/g2^7 + (3*g2*t^6.64)/g1^7 + (2*g2^9*t^6.64)/g1^15 + (3*g1^13*t^6.79)/g2^11 + (4*g1^5*t^6.79)/g2^3 + (4*g2^5*t^6.79)/g1^3 + (3*g2^13*t^6.79)/g1^11 + t^6.82/(g1^10*g2^26) + t^6.82/(g1^18*g2^18) + t^6.82/(g1^26*g2^10) + (2*g1^17*t^6.94)/g2^7 + 2*g1^9*g2*t^6.94 + 2*g1*g2^9*t^6.94 + (2*g2^17*t^6.94)/g1^7 + (2*t^6.97)/(g1^6*g2^22) + (3*t^6.97)/(g1^14*g2^14) + (2*t^6.97)/(g1^22*g2^6) + (2*g1^21*t^7.09)/g2^3 + 2*g1^13*g2^5*t^7.09 + 2*g1^5*g2^13*t^7.09 + (2*g2^21*t^7.09)/g1^3 + (3*t^7.12)/(g1^2*g2^18) + (4*t^7.12)/(g1^10*g2^10) + (3*t^7.12)/(g1^18*g2^2) + (4*g1^2*t^7.27)/g2^14 + (6*t^7.27)/(g1^6*g2^6) + (4*g2^2*t^7.27)/g1^14 + (4*g1^6*t^7.42)/g2^10 + (5*t^7.42)/(g1^2*g2^2) + (4*g2^6*t^7.42)/g1^10 + t^7.45/(g1^17*g2^25) + t^7.45/(g1^25*g2^17) + (4*g1^10*t^7.58)/g2^6 + 4*g1^2*g2^2*t^7.58 + (4*g2^10*t^7.58)/g1^6 + (2*t^7.6)/(g1^13*g2^21) + (2*t^7.6)/(g1^21*g2^13) + (2*g1^14*t^7.73)/g2^2 + 2*g1^6*g2^6*t^7.73 + (2*g2^14*t^7.73)/g1^2 + (3*t^7.76)/(g1^9*g2^17) + (3*t^7.76)/(g1^17*g2^9) + g1^18*g2^2*t^7.88 + g1^10*g2^10*t^7.88 + g1^2*g2^18*t^7.88 + (3*t^7.91)/(g1^5*g2^13) + (3*t^7.91)/(g1^13*g2^5) - (g1^7*t^8.06)/g2^17 - t^8.06/(g1*g2^9) - t^8.06/(g1^9*g2) - (g2^7*t^8.06)/g1^17 + t^8.09/(g1^24*g2^24) - (g1^11*t^8.21)/g2^13 - (3*g1^3*t^8.21)/g2^5 - (3*g2^3*t^8.21)/g1^5 - (g2^11*t^8.21)/g1^13 + t^8.24/(g1^4*g2^36) + t^8.24/(g1^12*g2^28) + (2*t^8.24)/(g1^20*g2^20) + t^8.24/(g1^28*g2^12) + t^8.24/(g1^36*g2^4) - (g1^15*t^8.36)/g2^9 - (4*g1^7*t^8.36)/g2 - (4*g2^7*t^8.36)/g1 - (g2^15*t^8.36)/g1^9 + t^8.39/g1^32 + t^8.39/g2^32 + (2*t^8.39)/(g1^8*g2^24) + (4*t^8.39)/(g1^16*g2^16) + (2*t^8.39)/(g1^24*g2^8) - 2*g1^11*g2^3*t^8.52 - 2*g1^3*g2^11*t^8.52 + (2*g1^4*t^8.54)/g2^28 + (3*t^8.54)/(g1^4*g2^20) + (5*t^8.54)/(g1^12*g2^12) + (3*t^8.54)/(g1^20*g2^4) + (2*g2^4*t^8.54)/g1^28 - g1^15*g2^7*t^8.67 - g1^7*g2^15*t^8.67 + (3*t^8.7)/g1^16 + (2*g1^8*t^8.7)/g2^24 + (3*t^8.7)/g2^16 + t^8.7/(g1^8*g2^8) + (2*g2^8*t^8.7)/g1^24 + (4*g1^12*t^8.85)/g2^20 + (4*g1^4*t^8.85)/g2^12 + (2*t^8.85)/(g1^4*g2^4) + (4*g2^4*t^8.85)/g1^12 + (4*g2^12*t^8.85)/g1^20 + t^8.88/(g1^11*g2^35) + t^8.88/(g1^19*g2^27) + t^8.88/(g1^27*g2^19) + t^8.88/(g1^35*g2^11) - t^4.42/(g1^2*g2^2*y) - t^6.48/(g1^3*g2^11*y) - t^6.48/(g1^11*g2^3*y) - (g1*t^6.64)/(g2^7*y) - (g2*t^6.64)/(g1^7*y) + (g1^2*t^7.27)/(g2^14*y) + (2*t^7.27)/(g1^6*g2^6*y) + (g2^2*t^7.27)/(g1^14*y) + (g1^6*t^7.42)/(g2^10*y) + (3*t^7.42)/(g1^2*g2^2*y) + (g2^6*t^7.42)/(g1^10*y) + (g1^10*t^7.58)/(g2^6*y) + (2*g1^2*g2^2*t^7.58)/y + (g2^10*t^7.58)/(g1^6*y) + (2*g1^6*g2^6*t^7.73)/y + t^7.76/(g1^9*g2^17*y) + t^7.76/(g1^17*g2^9*y) + (2*t^7.91)/(g1^5*g2^13*y) + (2*t^7.91)/(g1^13*g2^5*y) + (3*t^8.06)/(g1*g2^9*y) + (3*t^8.06)/(g1^9*g2*y) + (4*g1^3*t^8.21)/(g2^5*y) + (4*g2^3*t^8.21)/(g1^5*y) + (3*g1^7*t^8.36)/(g2*y) + (3*g2^7*t^8.36)/(g1*y) + (g1^11*g2^3*t^8.52)/y + (g1^3*g2^11*t^8.52)/y - t^8.54/(g1^4*g2^20*y) - t^8.54/(g1^20*g2^4*y) - t^8.7/(g1^16*y) - t^8.7/(g2^16*y) - t^8.7/(g1^8*g2^8*y) - (g1^4*t^8.85)/(g2^12*y) + t^8.85/(g1^4*g2^4*y) - (g2^4*t^8.85)/(g1^12*y) - (t^4.42*y)/(g1^2*g2^2) - (t^6.48*y)/(g1^3*g2^11) - (t^6.48*y)/(g1^11*g2^3) - (g1*t^6.64*y)/g2^7 - (g2*t^6.64*y)/g1^7 + (g1^2*t^7.27*y)/g2^14 + (2*t^7.27*y)/(g1^6*g2^6) + (g2^2*t^7.27*y)/g1^14 + (g1^6*t^7.42*y)/g2^10 + (3*t^7.42*y)/(g1^2*g2^2) + (g2^6*t^7.42*y)/g1^10 + (g1^10*t^7.58*y)/g2^6 + 2*g1^2*g2^2*t^7.58*y + (g2^10*t^7.58*y)/g1^6 + 2*g1^6*g2^6*t^7.73*y + (t^7.76*y)/(g1^9*g2^17) + (t^7.76*y)/(g1^17*g2^9) + (2*t^7.91*y)/(g1^5*g2^13) + (2*t^7.91*y)/(g1^13*g2^5) + (3*t^8.06*y)/(g1*g2^9) + (3*t^8.06*y)/(g1^9*g2) + (4*g1^3*t^8.21*y)/g2^5 + (4*g2^3*t^8.21*y)/g1^5 + (3*g1^7*t^8.36*y)/g2 + (3*g2^7*t^8.36*y)/g1 + g1^11*g2^3*t^8.52*y + g1^3*g2^11*t^8.52*y - (t^8.54*y)/(g1^4*g2^20) - (t^8.54*y)/(g1^20*g2^4) - (t^8.7*y)/g1^16 - (t^8.7*y)/g2^16 - (t^8.7*y)/(g1^8*g2^8) - (g1^4*t^8.85*y)/g2^12 + (t^8.85*y)/(g1^4*g2^4) - (g2^4*t^8.85*y)/g1^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1870 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ | 0.6491 | 0.8532 | 0.7608 | [X:[], M:[1.0, 1.0477, 0.9045, 0.7352, 0.7409, 0.6874], q:[0.7619, 0.2381], qb:[0.5506, 0.5449], phi:[0.4761]] | t^2.06 + t^2.21 + t^2.22 + t^2.35 + t^2.37 + t^2.71 + t^2.86 + t^3. + t^3.14 + t^3.92 + t^4.12 + t^4.27 + t^4.29 + 2*t^4.41 + 2*t^4.43 + t^4.45 + t^4.55 + 2*t^4.57 + t^4.59 + 2*t^4.7 + 2*t^4.71 + 2*t^4.73 + t^4.78 + 2*t^4.92 + t^4.94 + 2*t^5.06 + t^5.08 + 3*t^5.21 + 2*t^5.22 + 2*t^5.35 + 2*t^5.37 + t^5.43 + t^5.49 + t^5.51 + t^5.57 + 2*t^5.71 + t^5.86 - 2*t^6. - t^4.43/y - t^4.43*y | detail |