Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2857 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}q_{1}q_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ 0.666 0.8535 0.7803 [M:[1.1382, 0.7236, 0.6809, 1.3191, 0.8191, 0.8191], q:[0.75, 0.4309], qb:[0.4309, 0.3882], phi:[0.5]] [M:[[2], [-4], [-1], [1], [1], [1]], q:[[0], [-1]], qb:[[-1], [2]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{5}$, ${ }M_{6}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}$ -5 t^2.171 + 4*t^2.457 + t^3. + 2*t^3.415 + 2*t^3.957 + 3*t^4.085 + t^4.342 + 4*t^4.628 + 10*t^4.915 + t^5.171 + 4*t^5.457 + 2*t^5.585 + 6*t^5.872 - 5*t^6. + 3*t^6.256 + 8*t^6.415 + t^6.513 + 8*t^6.543 + 4*t^6.799 + 2*t^6.829 - 2*t^6.957 + 9*t^7.085 + t^7.342 + 20*t^7.372 - 2*t^7.5 + 2*t^7.756 + 9*t^7.915 + 8*t^8.043 + 12*t^8.329 + 3*t^8.427 - 20*t^8.457 + t^8.684 + 8*t^8.714 + 18*t^8.872 + 4*t^8.97 - t^4.5/y - t^6.671/y - (2*t^6.957)/y + t^7.085/y + (4*t^7.628)/y + (5*t^7.915)/y + (2*t^8.043)/y + t^8.171/y + t^8.329/y + (4*t^8.457)/y + (2*t^8.585)/y - t^8.842/y + (8*t^8.872)/y - t^4.5*y - t^6.671*y - 2*t^6.957*y + t^7.085*y + 4*t^7.628*y + 5*t^7.915*y + 2*t^8.043*y + t^8.171*y + t^8.329*y + 4*t^8.457*y + 2*t^8.585*y - t^8.842*y + 8*t^8.872*y t^2.171/g1^4 + 4*g1*t^2.457 + t^3. + 2*g1^2*t^3.415 + 2*g1*t^3.957 + (3*t^4.085)/g1^2 + t^4.342/g1^8 + (4*t^4.628)/g1^3 + 10*g1^2*t^4.915 + t^5.171/g1^4 + 4*g1*t^5.457 + (2*t^5.585)/g1^2 + 6*g1^3*t^5.872 - 5*t^6. + (3*t^6.256)/g1^6 + 8*g1^2*t^6.415 + t^6.513/g1^12 + (8*t^6.543)/g1 + (4*t^6.799)/g1^7 + 2*g1^4*t^6.829 - 2*g1*t^6.957 + (9*t^7.085)/g1^2 + t^7.342/g1^8 + 20*g1^3*t^7.372 - 2*t^7.5 + (2*t^7.756)/g1^6 + 9*g1^2*t^7.915 + (8*t^8.043)/g1 + 12*g1^4*t^8.329 + (3*t^8.427)/g1^10 - 20*g1*t^8.457 + t^8.684/g1^16 + (8*t^8.714)/g1^5 + 18*g1^3*t^8.872 + (4*t^8.97)/g1^11 - t^4.5/y - t^6.671/(g1^4*y) - (2*g1*t^6.957)/y + t^7.085/(g1^2*y) + (4*t^7.628)/(g1^3*y) + (5*g1^2*t^7.915)/y + (2*t^8.043)/(g1*y) + t^8.171/(g1^4*y) + (g1^4*t^8.329)/y + (4*g1*t^8.457)/y + (2*t^8.585)/(g1^2*y) - t^8.842/(g1^8*y) + (8*g1^3*t^8.872)/y - t^4.5*y - (t^6.671*y)/g1^4 - 2*g1*t^6.957*y + (t^7.085*y)/g1^2 + (4*t^7.628*y)/g1^3 + 5*g1^2*t^7.915*y + (2*t^8.043*y)/g1 + (t^8.171*y)/g1^4 + g1^4*t^8.329*y + 4*g1*t^8.457*y + (2*t^8.585*y)/g1^2 - (t^8.842*y)/g1^8 + 8*g1^3*t^8.872*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1835 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}q_{1}q_{2}$ 0.6509 0.8273 0.7868 [M:[1.1451, 0.7098, 0.6774, 1.3226, 0.8226], q:[0.75, 0.4274], qb:[0.4274, 0.3951], phi:[0.5]] t^2.129 + 3*t^2.468 + t^3. + 2*t^3.435 + t^3.532 + 2*t^3.968 + 3*t^4.065 + t^4.259 + 3*t^4.597 + 6*t^4.935 + t^5.129 + 3*t^5.468 + 2*t^5.565 + t^5.662 + 4*t^5.903 - 2*t^6. - t^4.5/y - t^4.5*y detail