Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2836 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ q_1q_2\tilde{q}_1^2$ + $ M_5q_1\tilde{q}_2$ 0.6243 0.8111 0.7697 [X:[], M:[0.9947, 1.0159, 1.0053, 0.7434, 0.7646], q:[0.7487, 0.2566], qb:[0.4974, 0.4868], phi:[0.5026]] [X:[], M:[[4], [-12], [-4], [5], [-11]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_5$, $ M_3$, $ \phi_1^2$, $ M_2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4^2$, $ M_4q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_4M_5$, $ \phi_1q_1q_2$, $ q_2^2\tilde{q}_1^2$, $ M_5q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_5^2$, $ M_3M_4$, $ M_4\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2M_4$, $ M_4\phi_1q_2^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_2$, $ M_3M_5$, $ M_5\phi_1^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_2M_5$, $ M_5\phi_1q_2^2$, $ M_4q_1\tilde{q}_1$, $ M_4\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ . -2 2*t^2.23 + t^2.26 + t^2.29 + 2*t^3.02 + 2*t^3.05 + 2*t^3.74 + t^4.43 + 4*t^4.46 + 3*t^4.49 + 3*t^4.52 + t^4.56 + t^4.59 + 4*t^5.25 + 5*t^5.28 + 3*t^5.31 + 2*t^5.34 + 2*t^5.97 - 2*t^6. + 2*t^6.03 + 4*t^6.06 + 3*t^6.1 + 2*t^6.66 + 5*t^6.69 + 3*t^6.72 + 7*t^6.75 + 5*t^6.79 + 2*t^6.82 + t^6.85 + t^6.88 - t^7.41 + 7*t^7.48 + 7*t^7.51 + 7*t^7.54 + 6*t^7.57 + 3*t^7.6 + 2*t^7.63 + t^8.17 - 7*t^8.23 + 4*t^8.29 + 8*t^8.33 + 5*t^8.36 + 3*t^8.39 + t^8.86 + 4*t^8.89 + 7*t^8.92 + 3*t^8.95 + 6*t^8.98 - t^4.51/y - t^6.74/y - t^6.8/y + (2*t^7.46)/y + (3*t^7.49)/y + t^7.52/y + t^8.21/y + (4*t^8.25)/y + (7*t^8.28)/y + (4*t^8.31)/y + (2*t^8.34)/y + (3*t^8.97)/y - t^4.51*y - t^6.74*y - t^6.8*y + 2*t^7.46*y + 3*t^7.49*y + t^7.52*y + t^8.21*y + 4*t^8.25*y + 7*t^8.28*y + 4*t^8.31*y + 2*t^8.34*y + 3*t^8.97*y 2*g1^5*t^2.23 + t^2.26/g1^3 + t^2.29/g1^11 + (2*t^3.02)/g1^4 + (2*t^3.05)/g1^12 + 2*g1^3*t^3.74 + g1^18*t^4.43 + 4*g1^10*t^4.46 + 3*g1^2*t^4.49 + (3*t^4.52)/g1^6 + t^4.56/g1^14 + t^4.59/g1^22 + 4*g1*t^5.25 + (5*t^5.28)/g1^7 + (3*t^5.31)/g1^15 + (2*t^5.34)/g1^23 + 2*g1^8*t^5.97 - 2*t^6. + (2*t^6.03)/g1^8 + (4*t^6.06)/g1^16 + (3*t^6.1)/g1^24 + 2*g1^23*t^6.66 + 5*g1^15*t^6.69 + 3*g1^7*t^6.72 + (7*t^6.75)/g1 + (5*t^6.79)/g1^9 + (2*t^6.82)/g1^17 + t^6.85/g1^25 + t^6.88/g1^33 - g1^22*t^7.41 + 7*g1^6*t^7.48 + (7*t^7.51)/g1^2 + (7*t^7.54)/g1^10 + (6*t^7.57)/g1^18 + (3*t^7.6)/g1^26 + (2*t^7.63)/g1^34 + g1^21*t^8.17 - 7*g1^5*t^8.23 + (4*t^8.29)/g1^11 + (8*t^8.33)/g1^19 + (5*t^8.36)/g1^27 + (3*t^8.39)/g1^35 + g1^36*t^8.86 + 4*g1^28*t^8.89 + 7*g1^20*t^8.92 + 3*g1^12*t^8.95 + 6*g1^4*t^8.98 - t^4.51/(g1^2*y) - (g1^3*t^6.74)/y - t^6.8/(g1^13*y) + (2*g1^10*t^7.46)/y + (3*g1^2*t^7.49)/y + t^7.52/(g1^6*y) + (g1^9*t^8.21)/y + (4*g1*t^8.25)/y + (7*t^8.28)/(g1^7*y) + (4*t^8.31)/(g1^15*y) + (2*t^8.34)/(g1^23*y) + (3*g1^8*t^8.97)/y - (t^4.51*y)/g1^2 - g1^3*t^6.74*y - (t^6.8*y)/g1^13 + 2*g1^10*t^7.46*y + 3*g1^2*t^7.49*y + (t^7.52*y)/g1^6 + g1^9*t^8.21*y + 4*g1*t^8.25*y + (7*t^8.28*y)/g1^7 + (4*t^8.31*y)/g1^15 + (2*t^8.34*y)/g1^23 + 3*g1^8*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3387 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ q_1q_2\tilde{q}_1^2$ + $ M_5q_1\tilde{q}_2$ + $ M_2M_5$ 0.6105 0.7926 0.7703 [X:[], M:[0.9565, 1.1304, 1.0435, 0.6957, 0.8696], q:[0.7391, 0.3043], qb:[0.4783, 0.3913], phi:[0.5217]] 2*t^2.09 + t^2.35 + t^2.61 + 2*t^3.13 + 2*t^3.39 + 2*t^3.65 + t^3.91 + 4*t^4.17 + 3*t^4.43 + 3*t^4.7 + t^4.96 + 5*t^5.22 + 5*t^5.48 + 5*t^5.74 + 2*t^6. - t^4.57/y - t^4.57*y detail {a: 118851/194672, c: 77147/97336, M1: 22/23, M2: 26/23, M3: 24/23, M4: 16/23, M5: 20/23, q1: 17/23, q2: 7/23, qb1: 11/23, qb2: 9/23, phi1: 12/23}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1818 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ q_1q_2\tilde{q}_1^2$ 0.6064 0.7789 0.7785 [X:[], M:[0.9868, 1.0396, 1.0132, 0.7335], q:[0.7467, 0.2665], qb:[0.4934, 0.467], phi:[0.5066]] 2*t^2.2 + t^2.28 + 2*t^3.04 + 2*t^3.12 + t^3.64 + 2*t^3.72 + t^4.32 + 4*t^4.4 + 3*t^4.48 + t^4.56 + 4*t^5.24 + 5*t^5.32 + t^5.4 + 2*t^5.84 + 3*t^5.92 - 2*t^6. - t^4.52/y - t^4.52*y detail