Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2820 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.6752 0.9041 0.7468 [M:[1.0, 0.8701, 0.7338, 0.7338, 0.6688, 0.6688], q:[0.7662, 0.2338], qb:[0.5649, 0.5649], phi:[0.4675]] [M:[[0, 0], [-8, -8], [-5, 3], [3, -5], [-9, -1], [-1, -9]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}$, ${ }M_{6}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{4}$, ${ }M_{1}\phi_{1}^{2}$ ${}$ -5 2*t^2.006 + 2*t^2.201 + 2*t^2.396 + t^2.61 + 2*t^2.805 + t^3. + 3*t^4.013 + 4*t^4.208 + 7*t^4.403 + 4*t^4.597 + 2*t^4.617 + 6*t^4.792 + 6*t^4.812 + 6*t^5.006 + 6*t^5.201 + t^5.221 + 2*t^5.396 + 2*t^5.416 + 4*t^5.61 + t^5.805 - 5*t^6. + 4*t^6.019 - t^6.195 + 6*t^6.214 - t^6.39 + 10*t^6.409 + 10*t^6.604 + 3*t^6.623 + 14*t^6.799 + 10*t^6.818 + 8*t^6.994 + 14*t^7.013 + 8*t^7.188 + 18*t^7.208 + 2*t^7.227 + 13*t^7.403 + 6*t^7.422 + 11*t^7.597 + 12*t^7.617 + 2*t^7.792 + 10*t^7.812 + t^7.831 - 3*t^7.987 - 2*t^8.006 + 7*t^8.026 - 10*t^8.201 + 12*t^8.221 - 16*t^8.396 + 18*t^8.416 - 8*t^8.591 + 11*t^8.61 + 4*t^8.63 - 4*t^8.786 + 11*t^8.805 + 14*t^8.825 - t^4.403/y - (2*t^6.409)/y - (2*t^6.604)/y + (3*t^7.208)/y + (5*t^7.403)/y + (5*t^7.597)/y + (2*t^7.617)/y + (2*t^7.792)/y + (6*t^7.812)/y + (8*t^8.006)/y + (8*t^8.201)/y + (4*t^8.396)/y - t^8.416/y - (2*t^8.61)/y - t^8.805/y - t^4.403*y - 2*t^6.409*y - 2*t^6.604*y + 3*t^7.208*y + 5*t^7.403*y + 5*t^7.597*y + 2*t^7.617*y + 2*t^7.792*y + 6*t^7.812*y + 8*t^8.006*y + 8*t^8.201*y + 4*t^8.396*y - t^8.416*y - 2*t^8.61*y - t^8.805*y t^2.006/(g1*g2^9) + t^2.006/(g1^9*g2) + (g1^3*t^2.201)/g2^5 + (g2^3*t^2.201)/g1^5 + (g1^7*t^2.396)/g2 + (g2^7*t^2.396)/g1 + t^2.61/(g1^8*g2^8) + (2*t^2.805)/(g1^4*g2^4) + t^3. + t^4.013/(g1^2*g2^18) + t^4.013/(g1^10*g2^10) + t^4.013/(g1^18*g2^2) + (g1^2*t^4.208)/g2^14 + (2*t^4.208)/(g1^6*g2^6) + (g2^2*t^4.208)/g1^14 + (2*g1^6*t^4.403)/g2^10 + (3*t^4.403)/(g1^2*g2^2) + (2*g2^6*t^4.403)/g1^10 + (g1^10*t^4.597)/g2^6 + 2*g1^2*g2^2*t^4.597 + (g2^10*t^4.597)/g1^6 + t^4.617/(g1^9*g2^17) + t^4.617/(g1^17*g2^9) + (2*g1^14*t^4.792)/g2^2 + 2*g1^6*g2^6*t^4.792 + (2*g2^14*t^4.792)/g1^2 + (3*t^4.812)/(g1^5*g2^13) + (3*t^4.812)/(g1^13*g2^5) + (3*t^5.006)/(g1*g2^9) + (3*t^5.006)/(g1^9*g2) + (3*g1^3*t^5.201)/g2^5 + (3*g2^3*t^5.201)/g1^5 + t^5.221/(g1^16*g2^16) + (g1^7*t^5.396)/g2 + (g2^7*t^5.396)/g1 + (2*t^5.416)/(g1^12*g2^12) + (4*t^5.61)/(g1^8*g2^8) + t^5.805/(g1^4*g2^4) - 3*t^6. - (g1^8*t^6.)/g2^8 - (g2^8*t^6.)/g1^8 + t^6.019/(g1^3*g2^27) + t^6.019/(g1^11*g2^19) + t^6.019/(g1^19*g2^11) + t^6.019/(g1^27*g2^3) - g1^4*g2^4*t^6.195 + (g1*t^6.214)/g2^23 + (2*t^6.214)/(g1^7*g2^15) + (2*t^6.214)/(g1^15*g2^7) + (g2*t^6.214)/g1^23 - g1^8*g2^8*t^6.39 + (2*g1^5*t^6.409)/g2^19 + (3*t^6.409)/(g1^3*g2^11) + (3*t^6.409)/(g1^11*g2^3) + (2*g2^5*t^6.409)/g1^19 + (2*g1^9*t^6.604)/g2^15 + (3*g1*t^6.604)/g2^7 + (3*g2*t^6.604)/g1^7 + (2*g2^9*t^6.604)/g1^15 + t^6.623/(g1^10*g2^26) + t^6.623/(g1^18*g2^18) + t^6.623/(g1^26*g2^10) + (3*g1^13*t^6.799)/g2^11 + (4*g1^5*t^6.799)/g2^3 + (4*g2^5*t^6.799)/g1^3 + (3*g2^13*t^6.799)/g1^11 + (3*t^6.818)/(g1^6*g2^22) + (4*t^6.818)/(g1^14*g2^14) + (3*t^6.818)/(g1^22*g2^6) + (2*g1^17*t^6.994)/g2^7 + 2*g1^9*g2*t^6.994 + 2*g1*g2^9*t^6.994 + (2*g2^17*t^6.994)/g1^7 + (4*t^7.013)/(g1^2*g2^18) + (6*t^7.013)/(g1^10*g2^10) + (4*t^7.013)/(g1^18*g2^2) + (2*g1^21*t^7.188)/g2^3 + 2*g1^13*g2^5*t^7.188 + 2*g1^5*g2^13*t^7.188 + (2*g2^21*t^7.188)/g1^3 + (5*g1^2*t^7.208)/g2^14 + (8*t^7.208)/(g1^6*g2^6) + (5*g2^2*t^7.208)/g1^14 + t^7.227/(g1^17*g2^25) + t^7.227/(g1^25*g2^17) + (4*g1^6*t^7.403)/g2^10 + (5*t^7.403)/(g1^2*g2^2) + (4*g2^6*t^7.403)/g1^10 + (3*t^7.422)/(g1^13*g2^21) + (3*t^7.422)/(g1^21*g2^13) + (4*g1^10*t^7.597)/g2^6 + 3*g1^2*g2^2*t^7.597 + (4*g2^10*t^7.597)/g1^6 + (6*t^7.617)/(g1^9*g2^17) + (6*t^7.617)/(g1^17*g2^9) + (g1^14*t^7.792)/g2^2 + (g2^14*t^7.792)/g1^2 + (5*t^7.812)/(g1^5*g2^13) + (5*t^7.812)/(g1^13*g2^5) + t^7.831/(g1^24*g2^24) - g1^18*g2^2*t^7.987 - g1^10*g2^10*t^7.987 - g1^2*g2^18*t^7.987 - (g1^7*t^8.006)/g2^17 - (g2^7*t^8.006)/g1^17 + t^8.026/(g1^4*g2^36) + t^8.026/(g1^12*g2^28) + (3*t^8.026)/(g1^20*g2^20) + t^8.026/(g1^28*g2^12) + t^8.026/(g1^36*g2^4) - (g1^11*t^8.201)/g2^13 - (4*g1^3*t^8.201)/g2^5 - (4*g2^3*t^8.201)/g1^5 - (g2^11*t^8.201)/g1^13 + t^8.221/g1^32 + t^8.221/g2^32 + (2*t^8.221)/(g1^8*g2^24) + (6*t^8.221)/(g1^16*g2^16) + (2*t^8.221)/(g1^24*g2^8) - (g1^15*t^8.396)/g2^9 - (7*g1^7*t^8.396)/g2 - (7*g2^7*t^8.396)/g1 - (g2^15*t^8.396)/g1^9 + (2*g1^4*t^8.416)/g2^28 + (3*t^8.416)/(g1^4*g2^20) + (8*t^8.416)/(g1^12*g2^12) + (3*t^8.416)/(g1^20*g2^4) + (2*g2^4*t^8.416)/g1^28 - 4*g1^11*g2^3*t^8.591 - 4*g1^3*g2^11*t^8.591 + (3*t^8.61)/g1^16 + (2*g1^8*t^8.61)/g2^24 + (3*t^8.61)/g2^16 + t^8.61/(g1^8*g2^8) + (2*g2^8*t^8.61)/g1^24 + t^8.63/(g1^11*g2^35) + t^8.63/(g1^19*g2^27) + t^8.63/(g1^27*g2^19) + t^8.63/(g1^35*g2^11) - 2*g1^15*g2^7*t^8.786 - 2*g1^7*g2^15*t^8.786 + (4*g1^12*t^8.805)/g2^20 + (3*g1^4*t^8.805)/g2^12 - (3*t^8.805)/(g1^4*g2^4) + (3*g2^4*t^8.805)/g1^12 + (4*g2^12*t^8.805)/g1^20 + (3*t^8.825)/(g1^7*g2^31) + (4*t^8.825)/(g1^15*g2^23) + (4*t^8.825)/(g1^23*g2^15) + (3*t^8.825)/(g1^31*g2^7) - t^4.403/(g1^2*g2^2*y) - t^6.409/(g1^3*g2^11*y) - t^6.409/(g1^11*g2^3*y) - (g1*t^6.604)/(g2^7*y) - (g2*t^6.604)/(g1^7*y) + (g1^2*t^7.208)/(g2^14*y) + t^7.208/(g1^6*g2^6*y) + (g2^2*t^7.208)/(g1^14*y) + (g1^6*t^7.403)/(g2^10*y) + (3*t^7.403)/(g1^2*g2^2*y) + (g2^6*t^7.403)/(g1^10*y) + (g1^10*t^7.597)/(g2^6*y) + (3*g1^2*g2^2*t^7.597)/y + (g2^10*t^7.597)/(g1^6*y) + t^7.617/(g1^9*g2^17*y) + t^7.617/(g1^17*g2^9*y) + (2*g1^6*g2^6*t^7.792)/y + (3*t^7.812)/(g1^5*g2^13*y) + (3*t^7.812)/(g1^13*g2^5*y) + (4*t^8.006)/(g1*g2^9*y) + (4*t^8.006)/(g1^9*g2*y) + (4*g1^3*t^8.201)/(g2^5*y) + (4*g2^3*t^8.201)/(g1^5*y) + (2*g1^7*t^8.396)/(g2*y) + (2*g2^7*t^8.396)/(g1*y) - t^8.416/(g1^4*g2^20*y) + t^8.416/(g1^12*g2^12*y) - t^8.416/(g1^20*g2^4*y) - t^8.61/(g1^16*y) - t^8.61/(g2^16*y) - (g1^4*t^8.805)/(g2^12*y) + t^8.805/(g1^4*g2^4*y) - (g2^4*t^8.805)/(g1^12*y) - (t^4.403*y)/(g1^2*g2^2) - (t^6.409*y)/(g1^3*g2^11) - (t^6.409*y)/(g1^11*g2^3) - (g1*t^6.604*y)/g2^7 - (g2*t^6.604*y)/g1^7 + (g1^2*t^7.208*y)/g2^14 + (t^7.208*y)/(g1^6*g2^6) + (g2^2*t^7.208*y)/g1^14 + (g1^6*t^7.403*y)/g2^10 + (3*t^7.403*y)/(g1^2*g2^2) + (g2^6*t^7.403*y)/g1^10 + (g1^10*t^7.597*y)/g2^6 + 3*g1^2*g2^2*t^7.597*y + (g2^10*t^7.597*y)/g1^6 + (t^7.617*y)/(g1^9*g2^17) + (t^7.617*y)/(g1^17*g2^9) + 2*g1^6*g2^6*t^7.792*y + (3*t^7.812*y)/(g1^5*g2^13) + (3*t^7.812*y)/(g1^13*g2^5) + (4*t^8.006*y)/(g1*g2^9) + (4*t^8.006*y)/(g1^9*g2) + (4*g1^3*t^8.201*y)/g2^5 + (4*g2^3*t^8.201*y)/g1^5 + (2*g1^7*t^8.396*y)/g2 + (2*g2^7*t^8.396*y)/g1 - (t^8.416*y)/(g1^4*g2^20) + (t^8.416*y)/(g1^12*g2^12) - (t^8.416*y)/(g1^20*g2^4) - (t^8.61*y)/g1^16 - (t^8.61*y)/g2^16 - (g1^4*t^8.805*y)/g2^12 + (t^8.805*y)/(g1^4*g2^4) - (g2^4*t^8.805*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1806 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ 0.6543 0.8625 0.7586 [M:[1.0, 0.8707, 0.7335, 0.7342, 0.6689], q:[0.7662, 0.2338], qb:[0.565, 0.5643], phi:[0.4677]] t^2.007 + t^2.201 + t^2.203 + t^2.394 + t^2.396 + t^2.612 + 2*t^2.806 + t^3. + t^3.991 + t^4.013 + t^4.207 + t^4.209 + 2*t^4.401 + 2*t^4.403 + t^4.405 + t^4.595 + 2*t^4.597 + t^4.599 + t^4.619 + 2*t^4.789 + 2*t^4.791 + 2*t^4.793 + 3*t^4.813 + t^4.815 + 3*t^5.007 + 2*t^5.009 + 3*t^5.201 + 3*t^5.203 + t^5.224 + t^5.394 + t^5.396 + 2*t^5.418 + 4*t^5.612 + t^5.806 - 3*t^6. - t^4.403/y - t^4.403*y detail