Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2804 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ 0.6262 0.8137 0.7696 [M:[0.9849, 1.0452, 0.9849, 0.7312, 0.7914], q:[0.7462, 0.2688], qb:[0.4925, 0.4623], phi:[0.5075]] [M:[[4], [-12], [4], [5], [-11]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{5}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{2}M_{5}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ ${}$ -2 2*t^2.193 + t^2.284 + t^2.374 + 2*t^2.955 + 2*t^3.136 + 2*t^3.716 + t^4.297 + 4*t^4.387 + 3*t^4.477 + 3*t^4.568 + t^4.658 + t^4.749 + 4*t^5.148 + 2*t^5.239 + 5*t^5.329 + t^5.42 + 2*t^5.51 + 5*t^5.91 - 2*t^6. + 3*t^6.09 + 3*t^6.271 + 2*t^6.49 + 5*t^6.58 + 7*t^6.671 + 3*t^6.761 + 5*t^6.852 + 2*t^6.942 + t^7.033 + t^7.123 + t^7.251 + 6*t^7.342 + 5*t^7.432 + 7*t^7.523 + 3*t^7.613 + 6*t^7.703 + t^7.794 + 2*t^7.884 + t^8.013 + 6*t^8.103 - 4*t^8.193 + 3*t^8.284 - 3*t^8.374 + 7*t^8.465 + t^8.555 + t^8.593 + 3*t^8.646 + 4*t^8.684 + 7*t^8.774 + 11*t^8.864 - 2*t^8.955 - t^4.523/y - t^6.716/y - t^6.897/y + (2*t^7.387)/y + t^7.477/y + (3*t^7.568)/y + (5*t^8.148)/y + (2*t^8.239)/y + (7*t^8.329)/y + (2*t^8.42)/y + (2*t^8.51)/y + (4*t^8.91)/y - t^4.523*y - t^6.716*y - t^6.897*y + 2*t^7.387*y + t^7.477*y + 3*t^7.568*y + 5*t^8.148*y + 2*t^8.239*y + 7*t^8.329*y + 2*t^8.42*y + 2*t^8.51*y + 4*t^8.91*y 2*g1^5*t^2.193 + t^2.284/g1^3 + t^2.374/g1^11 + 2*g1^4*t^2.955 + (2*t^3.136)/g1^12 + 2*g1^3*t^3.716 + g1^18*t^4.297 + 4*g1^10*t^4.387 + 3*g1^2*t^4.477 + (3*t^4.568)/g1^6 + t^4.658/g1^14 + t^4.749/g1^22 + 4*g1^9*t^5.148 + 2*g1*t^5.239 + (5*t^5.329)/g1^7 + t^5.42/g1^15 + (2*t^5.51)/g1^23 + 5*g1^8*t^5.91 - 2*t^6. + (3*t^6.09)/g1^8 + (3*t^6.271)/g1^24 + 2*g1^23*t^6.49 + 5*g1^15*t^6.58 + 7*g1^7*t^6.671 + (3*t^6.761)/g1 + (5*t^6.852)/g1^9 + (2*t^6.942)/g1^17 + t^7.033/g1^25 + t^7.123/g1^33 + g1^22*t^7.251 + 6*g1^14*t^7.342 + 5*g1^6*t^7.432 + (7*t^7.523)/g1^2 + (3*t^7.613)/g1^10 + (6*t^7.703)/g1^18 + t^7.794/g1^26 + (2*t^7.884)/g1^34 + g1^21*t^8.013 + 6*g1^13*t^8.103 - 4*g1^5*t^8.193 + (3*t^8.284)/g1^3 - (3*t^8.374)/g1^11 + (7*t^8.465)/g1^19 + t^8.555/g1^27 + g1^36*t^8.593 + (3*t^8.646)/g1^35 + 4*g1^28*t^8.684 + 7*g1^20*t^8.774 + 11*g1^12*t^8.864 - 2*g1^4*t^8.955 - t^4.523/(g1^2*y) - (g1^3*t^6.716)/y - t^6.897/(g1^13*y) + (2*g1^10*t^7.387)/y + (g1^2*t^7.477)/y + (3*t^7.568)/(g1^6*y) + (5*g1^9*t^8.148)/y + (2*g1*t^8.239)/y + (7*t^8.329)/(g1^7*y) + (2*t^8.42)/(g1^15*y) + (2*t^8.51)/(g1^23*y) + (4*g1^8*t^8.91)/y - (t^4.523*y)/g1^2 - g1^3*t^6.716*y - (t^6.897*y)/g1^13 + 2*g1^10*t^7.387*y + g1^2*t^7.477*y + (3*t^7.568*y)/g1^6 + 5*g1^9*t^8.148*y + 2*g1*t^8.239*y + (7*t^8.329*y)/g1^7 + (2*t^8.42*y)/g1^15 + (2*t^8.51*y)/g1^23 + 4*g1^8*t^8.91*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1793 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ 0.61 0.7861 0.776 [M:[0.9754, 1.0739, 0.9754, 0.7192], q:[0.7438, 0.2808], qb:[0.4877, 0.4384], phi:[0.5123]] 2*t^2.158 + t^2.305 + 2*t^2.926 + 2*t^3.222 + t^3.547 + 2*t^3.695 + t^4.168 + 4*t^4.315 + 3*t^4.463 + t^4.611 + 4*t^5.084 + 2*t^5.232 + 3*t^5.379 + t^5.527 + 2*t^5.704 + 6*t^5.852 - 2*t^6. - t^4.537/y - t^4.537*y detail