Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2803 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ 0.6266 0.8141 0.7697 [M:[0.982, 1.054, 0.982, 0.7635, 0.7635], q:[0.7455, 0.2725], qb:[0.455, 0.491], phi:[0.509]] [M:[[4], [-12], [4], [-3], [-3]], q:[[1], [-5]], qb:[[10], [2]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{5}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{5}q_{1}\tilde{q}_{1}$ ${}$ -3 t^2.182 + 3*t^2.291 + 2*t^2.946 + 2*t^3.162 + t^3.601 + t^3.818 + t^4.257 + 2*t^4.365 + 4*t^4.473 + 6*t^4.581 + 2*t^5.128 + 6*t^5.236 + t^5.345 + 5*t^5.453 + t^5.784 + 4*t^5.892 - 3*t^6. + 4*t^6.108 + 3*t^6.324 + t^6.439 + 5*t^6.547 + 3*t^6.655 + 9*t^6.764 + 7*t^6.872 + t^6.98 + 2*t^7.203 + 2*t^7.311 + 5*t^7.419 + 10*t^7.527 + 3*t^7.635 + 9*t^7.743 + t^7.858 + t^7.966 + 2*t^8.074 + 4*t^8.182 - 9*t^8.291 + 7*t^8.399 + t^8.507 + t^8.514 + 7*t^8.615 + 2*t^8.622 + 6*t^8.73 + 10*t^8.838 - 3*t^8.946 - t^4.527/y - (2*t^6.818)/y + t^7.365/y + (2*t^7.473)/y + (4*t^7.581)/y - t^7.689/y + (2*t^8.128)/y + (8*t^8.236)/y + (2*t^8.345)/y + (6*t^8.453)/y + t^8.784/y + (4*t^8.892)/y - t^4.527*y - 2*t^6.818*y + t^7.365*y + 2*t^7.473*y + 4*t^7.581*y - t^7.689*y + 2*t^8.128*y + 8*t^8.236*y + 2*t^8.345*y + 6*t^8.453*y + t^8.784*y + 4*t^8.892*y g1^5*t^2.182 + (3*t^2.291)/g1^3 + 2*g1^4*t^2.946 + (2*t^3.162)/g1^12 + g1^11*t^3.601 + t^3.818/g1^5 + g1^18*t^4.257 + 2*g1^10*t^4.365 + 4*g1^2*t^4.473 + (6*t^4.581)/g1^6 + 2*g1^9*t^5.128 + 6*g1*t^5.236 + t^5.345/g1^7 + (5*t^5.453)/g1^15 + g1^16*t^5.784 + 4*g1^8*t^5.892 - 3*t^6. + (4*t^6.108)/g1^8 + (3*t^6.324)/g1^24 + g1^23*t^6.439 + 5*g1^15*t^6.547 + 3*g1^7*t^6.655 + (9*t^6.764)/g1 + (7*t^6.872)/g1^9 + t^6.98/g1^17 + 2*g1^22*t^7.203 + 2*g1^14*t^7.311 + 5*g1^6*t^7.419 + (10*t^7.527)/g1^2 + (3*t^7.635)/g1^10 + (9*t^7.743)/g1^18 + g1^29*t^7.858 + g1^21*t^7.966 + 2*g1^13*t^8.074 + 4*g1^5*t^8.182 - (9*t^8.291)/g1^3 + (7*t^8.399)/g1^11 + t^8.507/g1^19 + g1^36*t^8.514 + (7*t^8.615)/g1^27 + 2*g1^28*t^8.622 + 6*g1^20*t^8.73 + 10*g1^12*t^8.838 - 3*g1^4*t^8.946 - t^4.527/(g1^2*y) - (2*t^6.818)/(g1^5*y) + (g1^10*t^7.365)/y + (2*g1^2*t^7.473)/y + (4*t^7.581)/(g1^6*y) - t^7.689/(g1^14*y) + (2*g1^9*t^8.128)/y + (8*g1*t^8.236)/y + (2*t^8.345)/(g1^7*y) + (6*t^8.453)/(g1^15*y) + (g1^16*t^8.784)/y + (4*g1^8*t^8.892)/y - (t^4.527*y)/g1^2 - (2*t^6.818*y)/g1^5 + g1^10*t^7.365*y + 2*g1^2*t^7.473*y + (4*t^7.581*y)/g1^6 - (t^7.689*y)/g1^14 + 2*g1^9*t^8.128*y + 8*g1*t^8.236*y + (2*t^8.345*y)/g1^7 + (6*t^8.453*y)/g1^15 + g1^16*t^8.784*y + 4*g1^8*t^8.892*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1791 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ 0.6082 0.781 0.7787 [M:[0.9798, 1.0606, 0.9798, 0.7652], q:[0.7449, 0.2753], qb:[0.4495, 0.4899], phi:[0.5101]] t^2.174 + 2*t^2.295 + 2*t^2.939 + 2*t^3.182 + t^3.583 + t^3.705 + t^3.826 + t^4.227 + 2*t^4.348 + 3*t^4.47 + 3*t^4.591 + 2*t^5.114 + 4*t^5.235 + t^5.356 + 3*t^5.477 + t^5.758 + 4*t^5.879 - t^6. - t^4.53/y - t^4.53*y detail