Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2755 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4q_1\tilde{q}_1$ + $ M_2M_4$ | 0.6165 | 0.8009 | 0.7697 | [X:[], M:[0.9469, 1.1592, 0.7347, 0.8408], q:[0.7367, 0.3163], qb:[0.4224, 0.4184], phi:[0.5265]] | [X:[], M:[[4], [-12], [20], [12]], q:[[1], [-5]], qb:[[-13], [25]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_4$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_2$, $ M_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_3^2$, $ M_3q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ M_3M_4$, $ M_4q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_4q_2\tilde{q}_1$, $ M_1M_3$, $ M_4^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_1M_4$, $ M_3\phi_1^2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_1^2$, $ M_2M_3$, $ M_4\phi_1^2$, $ M_3\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ M_3\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ | $M_4\phi_1q_2^2$ | 0 | 2*t^2.2 + t^2.22 + t^2.52 + t^2.84 + t^3.16 + t^3.47 + 2*t^3.48 + t^3.78 + t^4.09 + t^4.1 + t^4.11 + 3*t^4.41 + 2*t^4.42 + t^4.43 + 2*t^4.73 + t^4.74 + 3*t^5.04 + t^5.06 + 3*t^5.36 + t^5.38 + 2*t^5.67 + 5*t^5.68 + t^5.69 + 2*t^5.99 - t^6.01 + 2*t^6.29 + 3*t^6.31 + 2*t^6.32 + t^6.33 + 5*t^6.61 + 4*t^6.62 + 3*t^6.64 + t^6.65 + 4*t^6.93 + 3*t^6.94 + 2*t^6.96 + 6*t^7.25 + 2*t^7.26 + t^7.56 + 7*t^7.57 + t^7.58 + t^7.59 + 4*t^7.87 + 7*t^7.89 + t^7.9 + t^7.91 + t^8.18 + 4*t^8.19 + t^8.2 - 2*t^8.22 + 3*t^8.5 + 5*t^8.51 + 2*t^8.52 + t^8.55 + 7*t^8.82 + 6*t^8.83 + t^8.84 + t^8.85 + t^8.87 - t^4.58/y - t^6.78/y + t^7.41/y + (2*t^7.42)/y + (2*t^7.73)/y + t^7.74/y + (2*t^8.04)/y + t^8.06/y + (3*t^8.36)/y + (2*t^8.38)/y + (2*t^8.67)/y + (6*t^8.68)/y + (2*t^8.69)/y + (2*t^8.99)/y - t^4.58*y - t^6.78*y + t^7.41*y + 2*t^7.42*y + 2*t^7.73*y + t^7.74*y + 2*t^8.04*y + t^8.06*y + 3*t^8.36*y + 2*t^8.38*y + 2*t^8.67*y + 6*t^8.68*y + 2*t^8.69*y + 2*t^8.99*y | 2*g1^20*t^2.2 + t^2.22/g1^18 + g1^12*t^2.52 + g1^4*t^2.84 + t^3.16/g1^4 + g1^26*t^3.47 + (2*t^3.48)/g1^12 + g1^18*t^3.78 + g1^48*t^4.09 + g1^10*t^4.1 + t^4.11/g1^28 + 3*g1^40*t^4.41 + 2*g1^2*t^4.42 + t^4.43/g1^36 + 2*g1^32*t^4.73 + t^4.74/g1^6 + 3*g1^24*t^5.04 + t^5.06/g1^14 + 3*g1^16*t^5.36 + t^5.38/g1^22 + 2*g1^46*t^5.67 + 5*g1^8*t^5.68 + t^5.69/g1^30 + 2*g1^38*t^5.99 - t^6.01/g1^38 + 2*g1^68*t^6.29 + 3*g1^30*t^6.31 + (2*t^6.32)/g1^8 + t^6.33/g1^46 + 5*g1^60*t^6.61 + 4*g1^22*t^6.62 + (3*t^6.64)/g1^16 + t^6.65/g1^54 + 4*g1^52*t^6.93 + 3*g1^14*t^6.94 + (2*t^6.96)/g1^24 + 6*g1^44*t^7.25 + 2*g1^6*t^7.26 + g1^74*t^7.56 + 7*g1^36*t^7.57 + t^7.58/g1^2 + t^7.59/g1^40 + 4*g1^66*t^7.87 + 7*g1^28*t^7.89 + t^7.9/g1^10 + t^7.91/g1^48 + g1^96*t^8.18 + 4*g1^58*t^8.19 + g1^20*t^8.2 - (2*t^8.22)/g1^18 + 3*g1^88*t^8.5 + 5*g1^50*t^8.51 + 2*g1^12*t^8.52 + t^8.55/g1^64 + 7*g1^80*t^8.82 + 6*g1^42*t^8.83 + g1^4*t^8.84 + t^8.85/g1^34 + t^8.87/g1^72 - t^4.58/(g1^2*y) - (g1^18*t^6.78)/y + (g1^40*t^7.41)/y + (2*g1^2*t^7.42)/y + (2*g1^32*t^7.73)/y + t^7.74/(g1^6*y) + (2*g1^24*t^8.04)/y + t^8.06/(g1^14*y) + (3*g1^16*t^8.36)/y + (2*t^8.38)/(g1^22*y) + (2*g1^46*t^8.67)/y + (6*g1^8*t^8.68)/y + (2*t^8.69)/(g1^30*y) + (2*g1^38*t^8.99)/y - (t^4.58*y)/g1^2 - g1^18*t^6.78*y + g1^40*t^7.41*y + 2*g1^2*t^7.42*y + 2*g1^32*t^7.73*y + (t^7.74*y)/g1^6 + 2*g1^24*t^8.04*y + (t^8.06*y)/g1^14 + 3*g1^16*t^8.36*y + (2*t^8.38*y)/g1^22 + 2*g1^46*t^8.67*y + 6*g1^8*t^8.68*y + (2*t^8.69*y)/g1^30 + 2*g1^38*t^8.99*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1750 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4q_1\tilde{q}_1$ | 0.6264 | 0.8156 | 0.7681 | [X:[], M:[0.9845, 1.0466, 0.7252, 0.7563], q:[0.7461, 0.2694], qb:[0.4976, 0.4558], phi:[0.5078]] | 2*t^2.18 + t^2.27 + t^2.3 + t^2.95 + t^3.05 + 2*t^3.14 + t^3.61 + t^3.7 + t^4.26 + 3*t^4.35 + t^4.38 + 2*t^4.44 + 2*t^4.48 + t^4.51 + t^4.54 + t^4.57 + t^4.6 + 2*t^5.13 + 3*t^5.22 + t^5.25 + 4*t^5.32 + t^5.35 + 2*t^5.41 + t^5.44 + 2*t^5.78 + 2*t^5.87 + t^5.91 + t^5.97 - 2*t^6. - t^4.52/y - t^4.52*y | detail |