Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2754 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ + $ M_5q_1\tilde{q}_1$ 0.6438 0.846 0.761 [X:[], M:[0.9916, 1.0253, 0.7393, 0.7733, 0.7562], q:[0.7479, 0.2605], qb:[0.4959, 0.4788], phi:[0.5042]] [X:[], M:[[4, 4], [-12, -12], [-5, 7], [-1, -13], [-13, -1]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_5$, $ M_4$, $ M_1$, $ \phi_1^2$, $ M_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_3q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_3M_5$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ M_3M_4$, $ \phi_1q_1q_2$, $ M_5q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_5^2$, $ M_4q_2\tilde{q}_1$, $ M_4M_5$, $ M_4^2$, $ M_1M_3$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_1M_5$, $ M_3\phi_1^2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1M_4$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2M_3$, $ M_5\phi_1^2$, $ M_3\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_2M_5$, $ M_5\phi_1q_2^2$, $ M_4\phi_1^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_2M_4$, $ M_4\phi_1q_2^2$, $ M_3\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ $M_5\phi_1q_2\tilde{q}_2$ -1 2*t^2.22 + 2*t^2.27 + t^2.32 + t^2.97 + t^3.03 + 2*t^3.08 + t^3.73 + t^4.39 + 4*t^4.44 + 5*t^4.49 + 5*t^4.54 + 2*t^4.59 + t^4.64 + 2*t^5.19 + 4*t^5.24 + 6*t^5.29 + 2*t^5.34 + 2*t^5.35 + 2*t^5.4 + t^5.95 - t^6. + t^6.05 + 2*t^6.1 + 3*t^6.15 + 2*t^6.6 + 6*t^6.65 + 3*t^6.7 + 5*t^6.71 + 9*t^6.76 + 8*t^6.81 + 4*t^6.86 + 2*t^6.91 + t^6.96 + 3*t^7.41 + 6*t^7.46 + 11*t^7.51 + 11*t^7.56 + 10*t^7.61 + 2*t^7.66 + 2*t^7.67 + 2*t^7.72 - 2*t^8.17 - 6*t^8.22 - 3*t^8.27 + t^8.32 + 8*t^8.37 + 6*t^8.42 + 3*t^8.47 + t^8.77 + 4*t^8.82 + 9*t^8.87 + 10*t^8.92 + 6*t^8.97 + 2*t^8.98 - t^4.51/y - t^6.73/y - t^6.78/y - t^6.83/y + (2*t^7.44)/y + (4*t^7.49)/y + (3*t^7.54)/y + t^7.59/y + (3*t^8.19)/y + (5*t^8.24)/y + (8*t^8.29)/y + (2*t^8.34)/y + (3*t^8.35)/y + (2*t^8.4)/y + t^8.95/y - t^4.51*y - t^6.73*y - t^6.78*y - t^6.83*y + 2*t^7.44*y + 4*t^7.49*y + 3*t^7.54*y + t^7.59*y + 3*t^8.19*y + 5*t^8.24*y + 8*t^8.29*y + 2*t^8.34*y + 3*t^8.35*y + 2*t^8.4*y + t^8.95*y (2*g2^7*t^2.22)/g1^5 + (g1^7*t^2.27)/g2^5 + t^2.27/(g1^13*g2) + t^2.32/(g1*g2^13) + g1^4*g2^4*t^2.97 + t^3.03/(g1^4*g2^4) + (2*t^3.08)/(g1^12*g2^12) + (g2^5*t^3.73)/g1^7 + (g2^22*t^4.39)/g1^2 + g1^10*g2^10*t^4.44 + (3*g2^14*t^4.44)/g1^10 + (g1^22*t^4.49)/g2^2 + 2*g1^2*g2^2*t^4.49 + (2*g2^6*t^4.49)/g1^18 + (g1^14*t^4.54)/g2^10 + (3*t^4.54)/(g1^6*g2^6) + t^4.54/(g1^26*g2^2) + (g1^6*t^4.59)/g2^18 + t^4.59/(g1^14*g2^14) + t^4.64/(g1^2*g2^26) + (2*g2^11*t^5.19)/g1 + (g1^11*t^5.24)/g2 + (3*g2^3*t^5.24)/g1^9 + (2*g1^3*t^5.29)/g2^9 + (4*t^5.29)/(g1^17*g2^5) + (2*t^5.34)/(g1^25*g2^13) + (2*t^5.35)/(g1^5*g2^17) + (2*t^5.4)/(g1^13*g2^25) + (g2^12*t^5.95)/g1^12 - 2*t^6. + (g2^4*t^6.)/g1^20 - (g1^12*t^6.05)/g2^12 + (2*t^6.05)/(g1^8*g2^8) + (2*t^6.1)/(g1^16*g2^16) + (3*t^6.15)/(g1^24*g2^24) + (2*g2^29*t^6.6)/g1^7 + g1^5*g2^17*t^6.65 + (5*g2^21*t^6.65)/g1^15 + (3*g2^13*t^6.7)/g1^23 + g1^17*g2^5*t^6.71 + (4*g2^9*t^6.71)/g1^3 + (g1^29*t^6.76)/g2^7 + (2*g1^9*t^6.76)/g2^3 + (4*g2*t^6.76)/g1^11 + (2*g2^5*t^6.76)/g1^31 + (2*g1^21*t^6.81)/g2^15 + (g1*t^6.81)/g2^11 + (4*t^6.81)/(g1^19*g2^7) + t^6.81/(g1^39*g2^3) + (g1^13*t^6.86)/g2^23 + (2*t^6.86)/(g1^7*g2^19) + t^6.86/(g1^27*g2^15) + (g1^5*t^6.91)/g2^31 + t^6.91/(g1^15*g2^27) + t^6.96/(g1^3*g2^39) + (3*g2^18*t^7.41)/g1^6 + (6*g2^10*t^7.46)/g1^14 + (g1^18*t^7.51)/g2^6 + (3*t^7.51)/(g1^2*g2^2) + (7*g2^2*t^7.51)/g1^22 + (2*g1^10*t^7.56)/g2^14 + (5*t^7.56)/(g1^10*g2^10) + (4*t^7.56)/(g1^30*g2^6) + (3*g1^2*t^7.61)/g2^22 + (5*t^7.61)/(g1^18*g2^18) + (2*t^7.61)/(g1^38*g2^14) + (2*t^7.66)/(g1^26*g2^26) + (2*t^7.67)/(g1^6*g2^30) + (2*t^7.72)/(g1^14*g2^38) - g1^11*g2^23*t^8.12 + (g2^27*t^8.12)/g1^9 - g1^23*g2^11*t^8.17 - 2*g1^3*g2^15*t^8.17 + (g2^19*t^8.17)/g1^17 - 2*g1^15*g2^3*t^8.22 - (5*g2^7*t^8.22)/g1^5 + (g2^11*t^8.22)/g1^25 - (4*g1^7*t^8.27)/g2^5 + (g2^3*t^8.27)/g1^33 - (g1^19*t^8.32)/g2^17 - (3*t^8.32)/(g1*g2^13) + (5*t^8.32)/(g1^21*g2^9) - (g1^11*t^8.37)/g2^25 + (3*t^8.37)/(g1^9*g2^21) + (6*t^8.37)/(g1^29*g2^17) + (3*t^8.42)/(g1^17*g2^29) + (3*t^8.42)/(g1^37*g2^25) + (3*t^8.47)/(g1^25*g2^37) + (g2^44*t^8.77)/g1^4 + g1^8*g2^32*t^8.82 + (3*g2^36*t^8.82)/g1^12 + g1^20*g2^20*t^8.87 + g2^24*t^8.87 + (7*g2^28*t^8.87)/g1^20 + g1^32*g2^8*t^8.92 + (4*g2^16*t^8.92)/g1^8 + (5*g2^20*t^8.92)/g1^28 - 3*g1^4*g2^4*t^8.97 + (6*g2^8*t^8.97)/g1^16 + (3*g2^12*t^8.97)/g1^36 + g1^24*t^8.98 + (g1^44*t^8.98)/g2^4 - t^4.51/(g1^2*g2^2*y) - (g2^5*t^6.73)/(g1^7*y) - t^6.78/(g1^15*g2^3*y) - t^6.83/(g1^3*g2^15*y) + (g1^10*g2^10*t^7.44)/y + (g2^14*t^7.44)/(g1^10*y) + (2*g1^2*g2^2*t^7.49)/y + (2*g2^6*t^7.49)/(g1^18*y) + (3*t^7.54)/(g1^6*g2^6*y) + (g1^6*t^7.59)/(g2^18*y) + (3*g2^11*t^8.19)/(g1*y) + (2*g1^11*t^8.24)/(g2*y) + (3*g2^3*t^8.24)/(g1^9*y) + (3*g1^3*t^8.29)/(g2^9*y) + (5*t^8.29)/(g1^17*g2^5*y) + (2*t^8.34)/(g1^25*g2^13*y) + (3*t^8.35)/(g1^5*g2^17*y) + (2*t^8.4)/(g1^13*g2^25*y) + (g2^12*t^8.95)/(g1^12*y) - (t^4.51*y)/(g1^2*g2^2) - (g2^5*t^6.73*y)/g1^7 - (t^6.78*y)/(g1^15*g2^3) - (t^6.83*y)/(g1^3*g2^15) + g1^10*g2^10*t^7.44*y + (g2^14*t^7.44*y)/g1^10 + 2*g1^2*g2^2*t^7.49*y + (2*g2^6*t^7.49*y)/g1^18 + (3*t^7.54*y)/(g1^6*g2^6) + (g1^6*t^7.59*y)/g2^18 + (3*g2^11*t^8.19*y)/g1 + (2*g1^11*t^8.24*y)/g2 + (3*g2^3*t^8.24*y)/g1^9 + (3*g1^3*t^8.29*y)/g2^9 + (5*t^8.29*y)/(g1^17*g2^5) + (2*t^8.34*y)/(g1^25*g2^13) + (3*t^8.35*y)/(g1^5*g2^17) + (2*t^8.4*y)/(g1^13*g2^25) + (g2^12*t^8.95*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1748 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ 0.6255 0.812 0.7703 [X:[], M:[0.9851, 1.0448, 0.749, 0.7734], q:[0.7463, 0.2687], qb:[0.4748, 0.4804], phi:[0.5075]] t^2.23 + 2*t^2.25 + t^2.32 + t^2.96 + t^3.04 + 2*t^3.13 + t^3.66 + t^3.77 + t^4.37 + t^4.39 + t^4.4 + t^4.46 + 2*t^4.48 + 3*t^4.49 + t^4.55 + 2*t^4.57 + t^4.64 + t^5.19 + 2*t^5.2 + 2*t^5.28 + 2*t^5.29 + 2*t^5.36 + 3*t^5.38 + 2*t^5.45 + t^5.89 + 2*t^5.91 - 2*t^6. - t^4.52/y - t^4.52*y detail