Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2752 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ 0.625 0.8119 0.7698 [M:[0.9898, 1.0305, 0.7373, 0.778], q:[0.7475, 0.2627], qb:[0.4949, 0.4746], phi:[0.5051]] [M:[[4], [-12], [5], [-11]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{4}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ ${}$ -1 2*t^2.212 + t^2.273 + t^2.334 + t^2.97 + t^3.03 + 2*t^3.091 + 2*t^3.727 + t^4.363 + 4*t^4.424 + 3*t^4.485 + 3*t^4.546 + t^4.607 + t^4.668 + 2*t^5.181 + 3*t^5.242 + 5*t^5.303 + 2*t^5.364 + 2*t^5.425 + 3*t^5.939 - t^6. + 2*t^6.061 + 2*t^6.122 + 3*t^6.183 + 2*t^6.575 + 5*t^6.636 + 5*t^6.697 + 5*t^6.758 + 5*t^6.819 + 2*t^6.88 + t^6.941 + t^7.002 + 3*t^7.393 + 6*t^7.454 + 7*t^7.515 + 5*t^7.576 + 6*t^7.637 + 2*t^7.698 + 2*t^7.759 + t^8.09 + 2*t^8.151 - 4*t^8.212 + t^8.273 + t^8.334 + 7*t^8.395 + 3*t^8.456 + 3*t^8.517 + t^8.726 + 4*t^8.787 + 7*t^8.848 + 6*t^8.909 + 3*t^8.97 - t^4.515/y - t^6.727/y - t^6.849/y + (2*t^7.424)/y + (2*t^7.485)/y + (2*t^7.546)/y + (3*t^8.181)/y + (3*t^8.242)/y + (7*t^8.303)/y + (3*t^8.364)/y + (2*t^8.425)/y + (3*t^8.939)/y - t^4.515*y - t^6.727*y - t^6.849*y + 2*t^7.424*y + 2*t^7.485*y + 2*t^7.546*y + 3*t^8.181*y + 3*t^8.242*y + 7*t^8.303*y + 3*t^8.364*y + 2*t^8.425*y + 3*t^8.939*y 2*g1^5*t^2.212 + t^2.273/g1^3 + t^2.334/g1^11 + g1^4*t^2.97 + t^3.03/g1^4 + (2*t^3.091)/g1^12 + 2*g1^3*t^3.727 + g1^18*t^4.363 + 4*g1^10*t^4.424 + 3*g1^2*t^4.485 + (3*t^4.546)/g1^6 + t^4.607/g1^14 + t^4.668/g1^22 + 2*g1^9*t^5.181 + 3*g1*t^5.242 + (5*t^5.303)/g1^7 + (2*t^5.364)/g1^15 + (2*t^5.425)/g1^23 + 3*g1^8*t^5.939 - t^6. + (2*t^6.061)/g1^8 + (2*t^6.122)/g1^16 + (3*t^6.183)/g1^24 + 2*g1^23*t^6.575 + 5*g1^15*t^6.636 + 5*g1^7*t^6.697 + (5*t^6.758)/g1 + (5*t^6.819)/g1^9 + (2*t^6.88)/g1^17 + t^6.941/g1^25 + t^7.002/g1^33 + 3*g1^14*t^7.393 + 6*g1^6*t^7.454 + (7*t^7.515)/g1^2 + (5*t^7.576)/g1^10 + (6*t^7.637)/g1^18 + (2*t^7.698)/g1^26 + (2*t^7.759)/g1^34 + g1^21*t^8.09 + 2*g1^13*t^8.151 - 4*g1^5*t^8.212 + t^8.273/g1^3 + t^8.334/g1^11 + (7*t^8.395)/g1^19 + (3*t^8.456)/g1^27 + (3*t^8.517)/g1^35 + g1^36*t^8.726 + 4*g1^28*t^8.787 + 7*g1^20*t^8.848 + 6*g1^12*t^8.909 + 3*g1^4*t^8.97 - t^4.515/(g1^2*y) - (g1^3*t^6.727)/y - t^6.849/(g1^13*y) + (2*g1^10*t^7.424)/y + (2*g1^2*t^7.485)/y + (2*t^7.546)/(g1^6*y) + (3*g1^9*t^8.181)/y + (3*g1*t^8.242)/y + (7*t^8.303)/(g1^7*y) + (3*t^8.364)/(g1^15*y) + (2*t^8.425)/(g1^23*y) + (3*g1^8*t^8.939)/y - (t^4.515*y)/g1^2 - g1^3*t^6.727*y - (t^6.849*y)/g1^13 + 2*g1^10*t^7.424*y + 2*g1^2*t^7.485*y + (2*t^7.546*y)/g1^6 + 3*g1^9*t^8.181*y + 3*g1*t^8.242*y + (7*t^8.303*y)/g1^7 + (3*t^8.364*y)/g1^15 + (2*t^8.425*y)/g1^23 + 3*g1^8*t^8.939*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1747 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ 0.6079 0.7819 0.7775 [M:[0.9811, 1.0568, 0.7263], q:[0.7453, 0.2737], qb:[0.4905, 0.4527], phi:[0.5095]] 2*t^2.179 + t^2.293 + t^2.943 + t^3.057 + 2*t^3.17 + t^3.594 + 2*t^3.707 + t^4.244 + 4*t^4.358 + 3*t^4.472 + t^4.585 + 2*t^5.122 + 3*t^5.236 + 4*t^5.349 + t^5.463 + 2*t^5.773 + 4*t^5.886 - t^6. - t^4.528/y - t^4.528*y detail