Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2747 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ 0.6244 0.8107 0.7701 [M:[0.994, 1.0181, 0.7545, 0.7666], q:[0.7485, 0.2575], qb:[0.4849, 0.497], phi:[0.503]] [M:[[4], [-12], [-3], [-11]], q:[[1], [-5]], qb:[[10], [2]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{4}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}\phi_{1}q_{2}^{2}$ ${}q_{1}q_{2}\tilde{q}_{2}^{2}$ 0 t^2.227 + 2*t^2.264 + t^2.3 + t^2.982 + t^3.018 + 2*t^3.054 + t^3.736 + t^3.773 + t^4.419 + 2*t^4.455 + 3*t^4.491 + 4*t^4.527 + 2*t^4.563 + t^4.6 + t^5.209 + 3*t^5.245 + 4*t^5.282 + 4*t^5.318 + 2*t^5.354 + 3*t^6.036 + 3*t^6.072 + 3*t^6.109 + t^6.646 + 2*t^6.682 + 3*t^6.718 + 5*t^6.755 + 7*t^6.791 + 5*t^6.827 + 2*t^6.863 + t^6.899 + t^7.437 + 2*t^7.473 + 6*t^7.509 + 8*t^7.545 + 8*t^7.581 + 4*t^7.618 + 2*t^7.654 - 2*t^8.191 - 3*t^8.227 - t^8.264 + 3*t^8.3 + 7*t^8.336 + 7*t^8.372 + 3*t^8.408 + t^8.837 + 2*t^8.873 + 3*t^8.909 + 2*t^8.946 - t^4.509/y - t^6.773/y - t^6.809/y + t^7.455/y + (2*t^7.491)/y + (2*t^7.527)/y + t^7.563/y + (2*t^8.209)/y + (4*t^8.245)/y + (5*t^8.282)/y + (5*t^8.318)/y + (2*t^8.354)/y + t^8.964/y - t^4.509*y - t^6.773*y - t^6.809*y + t^7.455*y + 2*t^7.491*y + 2*t^7.527*y + t^7.563*y + 2*t^8.209*y + 4*t^8.245*y + 5*t^8.282*y + 5*t^8.318*y + 2*t^8.354*y + t^8.964*y g1^5*t^2.227 + (2*t^2.264)/g1^3 + t^2.3/g1^11 + g1^4*t^2.982 + t^3.018/g1^4 + (2*t^3.054)/g1^12 + g1^3*t^3.736 + t^3.773/g1^5 + g1^18*t^4.419 + 2*g1^10*t^4.455 + 3*g1^2*t^4.491 + (4*t^4.527)/g1^6 + (2*t^4.563)/g1^14 + t^4.6/g1^22 + g1^9*t^5.209 + 3*g1*t^5.245 + (4*t^5.282)/g1^7 + (4*t^5.318)/g1^15 + (2*t^5.354)/g1^23 + (3*t^6.036)/g1^8 + (3*t^6.072)/g1^16 + (3*t^6.109)/g1^24 + g1^23*t^6.646 + 2*g1^15*t^6.682 + 3*g1^7*t^6.718 + (5*t^6.755)/g1 + (7*t^6.791)/g1^9 + (5*t^6.827)/g1^17 + (2*t^6.863)/g1^25 + t^6.899/g1^33 + g1^14*t^7.437 + 2*g1^6*t^7.473 + (6*t^7.509)/g1^2 + (8*t^7.545)/g1^10 + (8*t^7.581)/g1^18 + (4*t^7.618)/g1^26 + (2*t^7.654)/g1^34 - 2*g1^13*t^8.191 - 3*g1^5*t^8.227 - t^8.264/g1^3 + (3*t^8.3)/g1^11 + (7*t^8.336)/g1^19 + (7*t^8.372)/g1^27 + (3*t^8.408)/g1^35 + g1^36*t^8.837 + 2*g1^28*t^8.873 + 3*g1^20*t^8.909 + 2*g1^12*t^8.946 - t^4.509/(g1^2*y) - t^6.773/(g1^5*y) - t^6.809/(g1^13*y) + (g1^10*t^7.455)/y + (2*g1^2*t^7.491)/y + (2*t^7.527)/(g1^6*y) + t^7.563/(g1^14*y) + (2*g1^9*t^8.209)/y + (4*g1*t^8.245)/y + (5*t^8.282)/(g1^7*y) + (5*t^8.318)/(g1^15*y) + (2*t^8.354)/(g1^23*y) + (g1^8*t^8.964)/y - (t^4.509*y)/g1^2 - (t^6.773*y)/g1^5 - (t^6.809*y)/g1^13 + g1^10*t^7.455*y + 2*g1^2*t^7.491*y + (2*t^7.527*y)/g1^6 + (t^7.563*y)/g1^14 + 2*g1^9*t^8.209*y + 4*g1*t^8.245*y + (5*t^8.282*y)/g1^7 + (5*t^8.318*y)/g1^15 + (2*t^8.354*y)/g1^23 + g1^8*t^8.964*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1745 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 0.6066 0.7783 0.7794 [M:[0.9857, 1.043, 0.7607], q:[0.7464, 0.2679], qb:[0.4642, 0.4928], phi:[0.5072]] t^2.196 + 2*t^2.282 + t^2.957 + t^3.043 + 2*t^3.129 + t^3.632 + t^3.718 + t^3.804 + t^4.307 + 2*t^4.393 + 3*t^4.479 + 3*t^4.564 + t^5.153 + 3*t^5.239 + 3*t^5.325 + 3*t^5.411 + t^5.828 + 2*t^5.914 - t^4.521/y - t^4.521*y detail