Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2735 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ | 0.6308 | 0.8213 | 0.7681 | [X:[], M:[1.0, 1.0477, 0.9045, 0.6903, 0.6903], q:[0.7619, 0.2381], qb:[0.5477, 0.5477], phi:[0.4761]] | [X:[], M:[[0, 0], [4, 4], [-8, -8], [-9, -1], [-1, -9]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_4$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_3$, $ \phi_1q_2^2$, $ M_1$, $ M_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_5^2$, $ M_4M_5$, $ M_4^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_5$, $ M_3M_4$, $ M_5\phi_1q_2^2$, $ M_4\phi_1q_2^2$, $ M_1M_5$, $ M_1M_4$, $ M_2M_5$, $ \phi_1q_2^3\tilde{q}_1$, $ M_2M_4$, $ \phi_1q_2^3\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3^2$, $ M_2q_2\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_3\phi_1q_2^2$, $ M_1M_3$, $ \phi_1^2q_2^4$, $ M_5\phi_1q_2\tilde{q}_1$, $ M_2M_3$, $ M_4\phi_1q_2\tilde{q}_1$, $ M_5\phi_1q_2\tilde{q}_2$, $ M_4\phi_1q_2\tilde{q}_2$ | . | -4 | 2*t^2.07 + 2*t^2.36 + t^2.71 + t^2.86 + t^3. + t^3.14 + 2*t^3.79 + 3*t^4.14 + 4*t^4.43 + 6*t^4.71 + 2*t^4.78 + 2*t^4.93 + 2*t^5.07 + 4*t^5.21 + 2*t^5.36 + t^5.43 + 2*t^5.5 + t^5.57 + 2*t^5.71 + 5*t^5.86 - 4*t^6. + 4*t^6.14 + 4*t^6.21 + 6*t^6.5 + 10*t^6.79 + 3*t^6.86 - 2*t^6.93 + 3*t^7. + 8*t^7.07 + 3*t^7.14 + 7*t^7.29 + 2*t^7.43 + 2*t^7.5 + 8*t^7.57 + 2*t^7.64 + 2*t^7.71 + 4*t^7.78 + 3*t^7.86 + 8*t^7.93 - 6*t^8.07 + t^8.14 + 8*t^8.21 + 6*t^8.28 - 10*t^8.36 + 2*t^8.43 + 8*t^8.5 + 10*t^8.57 - 2*t^8.64 - t^8.71 + 9*t^8.86 + 4*t^8.93 - t^4.43/y - (2*t^6.5)/y + (4*t^7.43)/y + (2*t^7.71)/y + (2*t^7.78)/y + (2*t^7.93)/y + (4*t^8.07)/y + (4*t^8.21)/y + (4*t^8.36)/y + (2*t^8.5)/y - (2*t^8.57)/y + t^8.71/y + (6*t^8.86)/y - t^4.43*y - 2*t^6.5*y + 4*t^7.43*y + 2*t^7.71*y + 2*t^7.78*y + 2*t^7.93*y + 4*t^8.07*y + 4*t^8.21*y + 4*t^8.36*y + 2*t^8.5*y - 2*t^8.57*y + t^8.71*y + 6*t^8.86*y | t^2.07/(g1*g2^9) + t^2.07/(g1^9*g2) + (g1^7*t^2.36)/g2 + (g2^7*t^2.36)/g1 + t^2.71/(g1^8*g2^8) + t^2.86/(g1^4*g2^4) + t^3. + g1^4*g2^4*t^3.14 + (g1^5*t^3.79)/g2^3 + (g2^5*t^3.79)/g1^3 + t^4.14/(g1^2*g2^18) + t^4.14/(g1^10*g2^10) + t^4.14/(g1^18*g2^2) + (g1^6*t^4.43)/g2^10 + (2*t^4.43)/(g1^2*g2^2) + (g2^6*t^4.43)/g1^10 + (2*g1^14*t^4.71)/g2^2 + 2*g1^6*g2^6*t^4.71 + (2*g2^14*t^4.71)/g1^2 + t^4.78/(g1^9*g2^17) + t^4.78/(g1^17*g2^9) + t^4.93/(g1^5*g2^13) + t^4.93/(g1^13*g2^5) + t^5.07/(g1*g2^9) + t^5.07/(g1^9*g2) + (2*g1^3*t^5.21)/g2^5 + (2*g2^3*t^5.21)/g1^5 + (g1^7*t^5.36)/g2 + (g2^7*t^5.36)/g1 + t^5.43/(g1^16*g2^16) + g1^11*g2^3*t^5.5 + g1^3*g2^11*t^5.5 + t^5.57/(g1^12*g2^12) + (2*t^5.71)/(g1^8*g2^8) + (g1^4*t^5.86)/g2^12 + (3*t^5.86)/(g1^4*g2^4) + (g2^4*t^5.86)/g1^12 - 2*t^6. - (g1^8*t^6.)/g2^8 - (g2^8*t^6.)/g1^8 + (g1^12*t^6.14)/g2^4 + 2*g1^4*g2^4*t^6.14 + (g2^12*t^6.14)/g1^4 + t^6.21/(g1^3*g2^27) + t^6.21/(g1^11*g2^19) + t^6.21/(g1^19*g2^11) + t^6.21/(g1^27*g2^3) + (g1^5*t^6.5)/g2^19 + (2*t^6.5)/(g1^3*g2^11) + (2*t^6.5)/(g1^11*g2^3) + (g2^5*t^6.5)/g1^19 + (2*g1^13*t^6.79)/g2^11 + (3*g1^5*t^6.79)/g2^3 + (3*g2^5*t^6.79)/g1^3 + (2*g2^13*t^6.79)/g1^11 + t^6.86/(g1^10*g2^26) + t^6.86/(g1^18*g2^18) + t^6.86/(g1^26*g2^10) - g1^9*g2*t^6.93 - g1*g2^9*t^6.93 + t^7./(g1^6*g2^22) + t^7./(g1^14*g2^14) + t^7./(g1^22*g2^6) + (2*g1^21*t^7.07)/g2^3 + 2*g1^13*g2^5*t^7.07 + 2*g1^5*g2^13*t^7.07 + (2*g2^21*t^7.07)/g1^3 + t^7.14/(g1^2*g2^18) + t^7.14/(g1^10*g2^10) + t^7.14/(g1^18*g2^2) + (2*g1^2*t^7.29)/g2^14 + (3*t^7.29)/(g1^6*g2^6) + (2*g2^2*t^7.29)/g1^14 + (g1^6*t^7.43)/g2^10 + (g2^6*t^7.43)/g1^10 + t^7.5/(g1^17*g2^25) + t^7.5/(g1^25*g2^17) + (3*g1^10*t^7.57)/g2^6 + 2*g1^2*g2^2*t^7.57 + (3*g2^10*t^7.57)/g1^6 + t^7.64/(g1^13*g2^21) + t^7.64/(g1^21*g2^13) + (g1^14*t^7.71)/g2^2 + (g2^14*t^7.71)/g1^2 + (2*t^7.78)/(g1^9*g2^17) + (2*t^7.78)/(g1^17*g2^9) + g1^18*g2^2*t^7.86 + g1^10*g2^10*t^7.86 + g1^2*g2^18*t^7.86 + (g1^3*t^7.93)/g2^21 + (3*t^7.93)/(g1^5*g2^13) + (3*t^7.93)/(g1^13*g2^5) + (g2^3*t^7.93)/g1^21 - (g1^7*t^8.07)/g2^17 - (2*t^8.07)/(g1*g2^9) - (2*t^8.07)/(g1^9*g2) - (g2^7*t^8.07)/g1^17 + t^8.14/(g1^24*g2^24) + (g1^11*t^8.21)/g2^13 + (3*g1^3*t^8.21)/g2^5 + (3*g2^3*t^8.21)/g1^5 + (g2^11*t^8.21)/g1^13 + t^8.28/(g1^4*g2^36) + t^8.28/(g1^12*g2^28) + (2*t^8.28)/(g1^20*g2^20) + t^8.28/(g1^28*g2^12) + t^8.28/(g1^36*g2^4) - (g1^15*t^8.36)/g2^9 - (4*g1^7*t^8.36)/g2 - (4*g2^7*t^8.36)/g1 - (g2^15*t^8.36)/g1^9 + (2*t^8.43)/(g1^16*g2^16) + (2*g1^19*t^8.5)/g2^5 + 2*g1^11*g2^3*t^8.5 + 2*g1^3*g2^11*t^8.5 + (2*g2^19*t^8.5)/g1^5 + (g1^4*t^8.57)/g2^28 + (2*t^8.57)/(g1^4*g2^20) + (4*t^8.57)/(g1^12*g2^12) + (2*t^8.57)/(g1^20*g2^4) + (g2^4*t^8.57)/g1^28 - g1^15*g2^7*t^8.64 - g1^7*g2^15*t^8.64 - t^8.71/(g1^8*g2^8) + (2*g1^12*t^8.86)/g2^20 + (2*g1^4*t^8.86)/g2^12 + t^8.86/(g1^4*g2^4) + (2*g2^4*t^8.86)/g1^12 + (2*g2^12*t^8.86)/g1^20 + t^8.93/(g1^11*g2^35) + t^8.93/(g1^19*g2^27) + t^8.93/(g1^27*g2^19) + t^8.93/(g1^35*g2^11) - t^4.43/(g1^2*g2^2*y) - t^6.5/(g1^3*g2^11*y) - t^6.5/(g1^11*g2^3*y) + (g1^6*t^7.43)/(g2^10*y) + (2*t^7.43)/(g1^2*g2^2*y) + (g2^6*t^7.43)/(g1^10*y) + (2*g1^6*g2^6*t^7.71)/y + t^7.78/(g1^9*g2^17*y) + t^7.78/(g1^17*g2^9*y) + t^7.93/(g1^5*g2^13*y) + t^7.93/(g1^13*g2^5*y) + (2*t^8.07)/(g1*g2^9*y) + (2*t^8.07)/(g1^9*g2*y) + (2*g1^3*t^8.21)/(g2^5*y) + (2*g2^3*t^8.21)/(g1^5*y) + (2*g1^7*t^8.36)/(g2*y) + (2*g2^7*t^8.36)/(g1*y) + (g1^11*g2^3*t^8.5)/y + (g1^3*g2^11*t^8.5)/y - t^8.57/(g1^4*g2^20*y) - t^8.57/(g1^20*g2^4*y) + t^8.71/(g1^8*g2^8*y) + (g1^4*t^8.86)/(g2^12*y) + (4*t^8.86)/(g1^4*g2^4*y) + (g2^4*t^8.86)/(g1^12*y) - (t^4.43*y)/(g1^2*g2^2) - (t^6.5*y)/(g1^3*g2^11) - (t^6.5*y)/(g1^11*g2^3) + (g1^6*t^7.43*y)/g2^10 + (2*t^7.43*y)/(g1^2*g2^2) + (g2^6*t^7.43*y)/g1^10 + 2*g1^6*g2^6*t^7.71*y + (t^7.78*y)/(g1^9*g2^17) + (t^7.78*y)/(g1^17*g2^9) + (t^7.93*y)/(g1^5*g2^13) + (t^7.93*y)/(g1^13*g2^5) + (2*t^8.07*y)/(g1*g2^9) + (2*t^8.07*y)/(g1^9*g2) + (2*g1^3*t^8.21*y)/g2^5 + (2*g2^3*t^8.21*y)/g1^5 + (2*g1^7*t^8.36*y)/g2 + (2*g2^7*t^8.36*y)/g1 + g1^11*g2^3*t^8.5*y + g1^3*g2^11*t^8.5*y - (t^8.57*y)/(g1^4*g2^20) - (t^8.57*y)/(g1^20*g2^4) + (t^8.71*y)/(g1^8*g2^8) + (g1^4*t^8.86*y)/g2^12 + (4*t^8.86*y)/(g1^4*g2^4) + (g2^4*t^8.86*y)/g1^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1735 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4q_1\tilde{q}_1$ | 0.6102 | 0.7816 | 0.7806 | [X:[], M:[1.0, 1.0442, 0.9116, 0.6905], q:[0.761, 0.239], qb:[0.5484, 0.54], phi:[0.4779]] | t^2.07 + t^2.34 + t^2.36 + t^2.73 + t^2.87 + t^3. + t^3.13 + t^3.77 + t^3.8 + t^3.9 + t^4.14 + t^4.41 + t^4.43 + 2*t^4.67 + 2*t^4.7 + 2*t^4.72 + t^4.81 + t^4.94 + t^5.07 + 2*t^5.2 + t^5.23 + t^5.34 + t^5.36 + 2*t^5.47 + t^5.49 + t^5.6 + 2*t^5.73 + t^5.84 + 2*t^5.87 - 2*t^6. - t^4.43/y - t^4.43*y | detail |