Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2716 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ | 0.6245 | 0.8105 | 0.7705 | [M:[0.9922, 1.0234, 0.7637, 0.7637], q:[0.748, 0.2598], qb:[0.4883, 0.4883], phi:[0.5039]] | [M:[[4, 4], [-12, -12], [-13, -1], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}\phi_{1}q_{2}^{2}$ | ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | -1 | 2*t^2.244 + 2*t^2.291 + t^2.977 + t^3.023 + 2*t^3.07 + 2*t^3.756 + 3*t^4.441 + 3*t^4.488 + 4*t^4.535 + 3*t^4.582 + 2*t^5.221 + 4*t^5.268 + 4*t^5.314 + 4*t^5.361 - t^6. + 5*t^6.047 + 2*t^6.094 + 3*t^6.141 + 2*t^6.686 + 8*t^6.732 + 4*t^6.779 + 8*t^6.826 + 4*t^6.873 + t^7.465 + 8*t^7.512 + 9*t^7.559 + 7*t^7.605 + 6*t^7.652 - 2*t^8.15 - 4*t^8.244 - 2*t^8.291 + 10*t^8.338 + 6*t^8.385 + 6*t^8.431 + 5*t^8.883 + t^8.93 - t^4.512/y - (2*t^6.803)/y + t^7.441/y + t^7.488/y + (4*t^7.535)/y + (4*t^8.221)/y + (4*t^8.268)/y + (6*t^8.314)/y + (4*t^8.361)/y - t^4.512*y - 2*t^6.803*y + t^7.441*y + t^7.488*y + 4*t^7.535*y + 4*t^8.221*y + 4*t^8.268*y + 6*t^8.314*y + 4*t^8.361*y | (g1^7*t^2.244)/g2^5 + (g2^7*t^2.244)/g1^5 + t^2.291/(g1*g2^13) + t^2.291/(g1^13*g2) + g1^4*g2^4*t^2.977 + t^3.023/(g1^4*g2^4) + (2*t^3.07)/(g1^12*g2^12) + (g1^5*t^3.756)/g2^7 + (g2^5*t^3.756)/g1^7 + (g1^22*t^4.441)/g2^2 + g1^10*g2^10*t^4.441 + (g2^22*t^4.441)/g1^2 + (g1^14*t^4.488)/g2^10 + g1^2*g2^2*t^4.488 + (g2^14*t^4.488)/g1^10 + (g1^6*t^4.535)/g2^18 + (2*t^4.535)/(g1^6*g2^6) + (g2^6*t^4.535)/g1^18 + t^4.582/(g1^2*g2^26) + t^4.582/(g1^14*g2^14) + t^4.582/(g1^26*g2^2) + (g1^11*t^5.221)/g2 + (g2^11*t^5.221)/g1 + (2*g1^3*t^5.268)/g2^9 + (2*g2^3*t^5.268)/g1^9 + (2*t^5.314)/(g1^5*g2^17) + (2*t^5.314)/(g1^17*g2^5) + (2*t^5.361)/(g1^13*g2^25) + (2*t^5.361)/(g1^25*g2^13) - t^6. + (g1^4*t^6.047)/g2^20 + (3*t^6.047)/(g1^8*g2^8) + (g2^4*t^6.047)/g1^20 + (2*t^6.094)/(g1^16*g2^16) + (3*t^6.141)/(g1^24*g2^24) + (g1^29*t^6.686)/g2^7 + (g2^29*t^6.686)/g1^7 + (2*g1^21*t^6.732)/g2^15 + (2*g1^9*t^6.732)/g2^3 + (2*g2^9*t^6.732)/g1^3 + (2*g2^21*t^6.732)/g1^15 + (g1^13*t^6.779)/g2^23 + (g1*t^6.779)/g2^11 + (g2*t^6.779)/g1^11 + (g2^13*t^6.779)/g1^23 + (g1^5*t^6.826)/g2^31 + (3*t^6.826)/(g1^7*g2^19) + (3*t^6.826)/(g1^19*g2^7) + (g2^5*t^6.826)/g1^31 + t^6.873/(g1^3*g2^39) + t^6.873/(g1^15*g2^27) + t^6.873/(g1^27*g2^15) + t^6.873/(g1^39*g2^3) + (g1^18*t^7.465)/g2^6 - g1^6*g2^6*t^7.465 + (g2^18*t^7.465)/g1^6 + (3*g1^10*t^7.512)/g2^14 + (2*t^7.512)/(g1^2*g2^2) + (3*g2^10*t^7.512)/g1^14 + (3*g1^2*t^7.559)/g2^22 + (3*t^7.559)/(g1^10*g2^10) + (3*g2^2*t^7.559)/g1^22 + (2*t^7.605)/(g1^6*g2^30) + (3*t^7.605)/(g1^18*g2^18) + (2*t^7.605)/(g1^30*g2^6) + (2*t^7.652)/(g1^14*g2^38) + (2*t^7.652)/(g1^26*g2^26) + (2*t^7.652)/(g1^38*g2^14) - g1^23*g2^11*t^8.15 - g1^11*g2^23*t^8.15 + (g1^27*t^8.197)/g2^9 - g1^15*g2^3*t^8.197 - g1^3*g2^15*t^8.197 + (g2^27*t^8.197)/g1^9 - (2*g1^7*t^8.244)/g2^5 - (2*g2^7*t^8.244)/g1^5 - t^8.291/(g1*g2^13) - t^8.291/(g1^13*g2) + (g1^3*t^8.338)/g2^33 + (4*t^8.338)/(g1^9*g2^21) + (4*t^8.338)/(g1^21*g2^9) + (g2^3*t^8.338)/g1^33 + (3*t^8.385)/(g1^17*g2^29) + (3*t^8.385)/(g1^29*g2^17) + (3*t^8.431)/(g1^25*g2^37) + (3*t^8.431)/(g1^37*g2^25) + (g1^44*t^8.883)/g2^4 + g1^32*g2^8*t^8.883 + g1^20*g2^20*t^8.883 + g1^8*g2^32*t^8.883 + (g2^44*t^8.883)/g1^4 + (g1^36*t^8.93)/g2^12 - g1^12*g2^12*t^8.93 + (g2^36*t^8.93)/g1^12 + (2*g1^28*t^8.977)/g2^20 - 4*g1^4*g2^4*t^8.977 + (2*g2^28*t^8.977)/g1^20 - t^4.512/(g1^2*g2^2*y) - t^6.803/(g1^3*g2^15*y) - t^6.803/(g1^15*g2^3*y) + (g1^10*g2^10*t^7.441)/y + (g1^2*g2^2*t^7.488)/y + (g1^6*t^7.535)/(g2^18*y) + (2*t^7.535)/(g1^6*g2^6*y) + (g2^6*t^7.535)/(g1^18*y) + (2*g1^11*t^8.221)/(g2*y) + (2*g2^11*t^8.221)/(g1*y) + (2*g1^3*t^8.268)/(g2^9*y) + (2*g2^3*t^8.268)/(g1^9*y) + (3*t^8.314)/(g1^5*g2^17*y) + (3*t^8.314)/(g1^17*g2^5*y) + (2*t^8.361)/(g1^13*g2^25*y) + (2*t^8.361)/(g1^25*g2^13*y) - (t^4.512*y)/(g1^2*g2^2) - (t^6.803*y)/(g1^3*g2^15) - (t^6.803*y)/(g1^15*g2^3) + g1^10*g2^10*t^7.441*y + g1^2*g2^2*t^7.488*y + (g1^6*t^7.535*y)/g2^18 + (2*t^7.535*y)/(g1^6*g2^6) + (g2^6*t^7.535*y)/g1^18 + (2*g1^11*t^8.221*y)/g2 + (2*g2^11*t^8.221*y)/g1 + (2*g1^3*t^8.268*y)/g2^9 + (2*g2^3*t^8.268*y)/g1^9 + (3*t^8.314*y)/(g1^5*g2^17) + (3*t^8.314*y)/(g1^17*g2^5) + (2*t^8.361*y)/(g1^13*g2^25) + (2*t^8.361*y)/(g1^25*g2^13) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1716 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ | 0.6066 | 0.7782 | 0.7795 | [M:[0.9854, 1.0439, 0.7625], q:[0.7463, 0.2683], qb:[0.4911, 0.4649], phi:[0.5073]] | t^2.2 + t^2.278 + t^2.288 + t^2.956 + t^3.044 + 2*t^3.132 + t^3.634 + t^3.722 + t^3.8 + t^4.312 + t^4.39 + t^4.399 + t^4.469 + t^4.478 + t^4.487 + t^4.557 + t^4.566 + t^4.575 + t^5.156 + t^5.234 + 2*t^5.244 + t^5.322 + 2*t^5.332 + t^5.41 + 2*t^5.419 + t^5.834 + t^5.912 + t^5.921 - t^6. - t^4.522/y - t^4.522*y | detail |