Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2644 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{5}M_{7}$ 0.6965 0.8801 0.7914 [M:[0.9393, 0.8127, 0.9393, 0.8127, 1.1873, 0.7493, 0.8127], q:[0.6543, 0.4063], qb:[0.4063, 0.781], phi:[0.438]] [M:[[-22], [-2], [-22], [-2], [2], [8], [-2]], q:[[23], [-1]], qb:[[-1], [3]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$ ${}M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ -3 t^2.248 + 3*t^2.438 + t^2.628 + 2*t^2.818 + 2*t^3.752 + t^4.306 + 3*t^4.496 + 3*t^4.686 + 7*t^4.876 + 5*t^5.066 + t^5.24 + 5*t^5.256 + 2*t^5.446 + 3*t^5.636 - 3*t^6. + 4*t^6.19 + t^6.38 + t^6.554 + 2*t^6.57 + 3*t^6.744 + 7*t^6.934 + 6*t^7.124 + 13*t^7.314 + t^7.488 + 13*t^7.504 + 2*t^7.678 + 11*t^7.694 - t^7.868 + 8*t^7.884 - 2*t^8.058 + 8*t^8.074 - 3*t^8.248 + 3*t^8.264 - 11*t^8.438 + 4*t^8.454 + 2*t^8.628 + t^8.802 - 4*t^8.818 + 4*t^8.992 - t^4.314/y - t^6.562/y - (2*t^6.752)/y - t^6.942/y - (2*t^7.132)/y + (2*t^7.496)/y + (4*t^7.686)/y + (6*t^7.876)/y + (6*t^8.066)/y + (6*t^8.256)/y + (2*t^8.446)/y + t^8.636/y - t^8.81/y - t^4.314*y - t^6.562*y - 2*t^6.752*y - t^6.942*y - 2*t^7.132*y + 2*t^7.496*y + 4*t^7.686*y + 6*t^7.876*y + 6*t^8.066*y + 6*t^8.256*y + 2*t^8.446*y + t^8.636*y - t^8.81*y g1^8*t^2.248 + (3*t^2.438)/g1^2 + t^2.628/g1^12 + (2*t^2.818)/g1^22 + (2*t^3.752)/g1^8 + g1^26*t^4.306 + 3*g1^16*t^4.496 + 3*g1^6*t^4.686 + (7*t^4.876)/g1^4 + (5*t^5.066)/g1^14 + g1^40*t^5.24 + (5*t^5.256)/g1^24 + (2*t^5.446)/g1^34 + (3*t^5.636)/g1^44 - 3*t^6. + (4*t^6.19)/g1^10 + t^6.38/g1^20 + g1^34*t^6.554 + (2*t^6.57)/g1^30 + 3*g1^24*t^6.744 + 7*g1^14*t^6.934 + 6*g1^4*t^7.124 + (13*t^7.314)/g1^6 + g1^48*t^7.488 + (13*t^7.504)/g1^16 + 2*g1^38*t^7.678 + (11*t^7.694)/g1^26 - g1^28*t^7.868 + (8*t^7.884)/g1^36 - 2*g1^18*t^8.058 + (8*t^8.074)/g1^46 - 3*g1^8*t^8.248 + (3*t^8.264)/g1^56 - (11*t^8.438)/g1^2 + (4*t^8.454)/g1^66 + (2*t^8.628)/g1^12 + g1^42*t^8.802 - (4*t^8.818)/g1^22 + 4*g1^32*t^8.992 - t^4.314/(g1^6*y) - (g1^2*t^6.562)/y - (2*t^6.752)/(g1^8*y) - t^6.942/(g1^18*y) - (2*t^7.132)/(g1^28*y) + (2*g1^16*t^7.496)/y + (4*g1^6*t^7.686)/y + (6*t^7.876)/(g1^4*y) + (6*t^8.066)/(g1^14*y) + (6*t^8.256)/(g1^24*y) + (2*t^8.446)/(g1^34*y) + t^8.636/(g1^44*y) - (g1^10*t^8.81)/y - (t^4.314*y)/g1^6 - g1^2*t^6.562*y - (2*t^6.752*y)/g1^8 - (t^6.942*y)/g1^18 - (2*t^7.132*y)/g1^28 + 2*g1^16*t^7.496*y + 4*g1^6*t^7.686*y + (6*t^7.876*y)/g1^4 + (6*t^8.066*y)/g1^14 + (6*t^8.256*y)/g1^24 + (2*t^8.446*y)/g1^34 + (t^8.636*y)/g1^44 - g1^10*t^8.81*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1551 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ 0.6808 0.8526 0.7985 [M:[0.9426, 0.813, 0.9426, 0.813, 1.187, 0.7481], q:[0.6509, 0.4065], qb:[0.4065, 0.7806], phi:[0.4389]] t^2.244 + 2*t^2.439 + t^2.633 + 2*t^2.828 + t^3.561 + 2*t^3.756 + t^4.294 + 3*t^4.489 + 2*t^4.683 + 4*t^4.878 + 4*t^5.072 + t^5.222 + 3*t^5.267 + 2*t^5.461 + 3*t^5.656 + t^5.806 - t^6. - t^4.317/y - t^4.317*y detail