Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2593 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{8}$ 0.7339 0.918 0.7994 [M:[1.053, 0.841, 0.8971, 0.9969, 1.0031, 0.9969, 0.6855, 0.947], q:[0.5265, 0.4205], qb:[0.5764, 0.5826], phi:[0.4735]] [M:[[2, 2], [-6, -6], [-7, -1], [3, -3], [-3, 3], [3, -3], [7, 7], [-2, -2]], q:[[1, 1], [-3, -3]], qb:[[6, 0], [0, 6]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{6}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{7}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{3}M_{8}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{8}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{4}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$ ${}$ -4 t^2.056 + t^2.523 + t^2.691 + 2*t^2.841 + 2*t^2.991 + t^3.327 + t^4.113 + t^4.262 + t^4.411 + t^4.43 + 2*t^4.579 + t^4.729 + 2*t^4.748 + t^4.879 + 3*t^4.897 + t^4.916 + t^5.046 + 2*t^5.047 + t^5.214 + 2*t^5.364 + t^5.383 + t^5.384 + t^5.514 + t^5.532 + 4*t^5.682 + 3*t^5.832 + 2*t^5.981 - 4*t^6. - t^6.15 + t^6.168 + t^6.169 + t^6.318 + 2*t^6.636 + t^6.655 + t^6.785 + t^6.786 + 2*t^6.804 + t^6.935 + t^6.953 + 3*t^6.954 + t^6.973 + 3*t^7.103 + 2*t^7.104 + t^7.121 + 3*t^7.252 + 3*t^7.271 + 2*t^7.402 + 3*t^7.421 + 2*t^7.439 + t^7.44 + t^7.569 + 3*t^7.57 + 2*t^7.589 + t^7.608 + 3*t^7.72 + t^7.737 + 4*t^7.738 + 2*t^7.757 + 2*t^7.869 + 2*t^7.887 + 2*t^7.888 + t^7.906 + t^8.037 + t^8.038 + t^8.055 - 5*t^8.056 + t^8.074 + 3*t^8.205 - t^8.206 + t^8.224 + t^8.225 + t^8.226 + t^8.244 + t^8.355 + 2*t^8.373 + t^8.374 + t^8.504 + 4*t^8.673 - 4*t^8.691 + 2*t^8.692 + t^8.711 + 3*t^8.822 - 8*t^8.841 + t^8.842 - t^8.86 + 2*t^8.861 + 2*t^8.972 - 8*t^8.991 + t^8.992 - t^4.421/y - t^6.477/y - t^6.944/y - t^7.112/y - t^7.262/y - t^7.411/y + t^7.43/y + (2*t^7.579)/y + t^7.729/y + t^7.748/y + (3*t^7.897)/y + (2*t^8.047)/y + t^8.214/y + (3*t^8.364)/y + t^8.384/y + (2*t^8.514)/y + (2*t^8.532)/y - t^8.533/y + (3*t^8.682)/y + (4*t^8.832)/y + t^8.85/y + t^8.981/y - t^4.421*y - t^6.477*y - t^6.944*y - t^7.112*y - t^7.262*y - t^7.411*y + t^7.43*y + 2*t^7.579*y + t^7.729*y + t^7.748*y + 3*t^7.897*y + 2*t^8.047*y + t^8.214*y + 3*t^8.364*y + t^8.384*y + 2*t^8.514*y + 2*t^8.532*y - t^8.533*y + 3*t^8.682*y + 4*t^8.832*y + t^8.85*y + t^8.981*y g1^7*g2^7*t^2.056 + t^2.523/(g1^6*g2^6) + t^2.691/(g1^7*g2) + (2*t^2.841)/(g1^2*g2^2) + (2*g1^3*t^2.991)/g2^3 + g1*g2^7*t^3.327 + g1^14*g2^14*t^4.113 + t^4.262/(g1^3*g2^3) + (g1^2*t^4.411)/g2^4 + (g2^2*t^4.43)/g1^4 + 2*g1*g2*t^4.579 + g1^6*t^4.729 + 2*g2^6*t^4.748 + (g1^11*t^4.879)/g2 + 3*g1^5*g2^5*t^4.897 + (g2^11*t^4.916)/g1 + t^5.046/(g1^12*g2^12) + 2*g1^10*g2^4*t^5.047 + t^5.214/(g1^13*g2^7) + (2*t^5.364)/(g1^8*g2^8) + t^5.383/(g1^14*g2^2) + g1^8*g2^14*t^5.384 + t^5.514/(g1^3*g2^9) + t^5.532/(g1^9*g2^3) + (4*t^5.682)/(g1^4*g2^4) + (3*g1*t^5.832)/g2^5 + (2*g1^6*t^5.981)/g2^6 - 4*t^6. - (g1^5*t^6.15)/g2 + (g2^5*t^6.168)/g1 + g1^21*g2^21*t^6.169 + g1^4*g2^4*t^6.318 + 2*g1^8*g2^8*t^6.636 + g1^2*g2^14*t^6.655 + t^6.785/(g1^9*g2^9) + g1^13*g2^7*t^6.786 + 2*g1^7*g2^13*t^6.804 + g1^18*g2^6*t^6.935 + t^6.953/(g1^10*g2^4) + 3*g1^12*g2^12*t^6.954 + g1^6*g2^18*t^6.973 + (3*t^7.103)/(g1^5*g2^5) + 2*g1^17*g2^11*t^7.104 + (g2*t^7.121)/g1^11 + (3*t^7.252)/g2^6 + (3*t^7.271)/g1^6 + (2*g1^5*t^7.402)/g2^7 + (3*t^7.421)/(g1*g2) + (2*g2^5*t^7.439)/g1^7 + g1^15*g2^21*t^7.44 + t^7.569/(g1^18*g2^18) + (3*g1^4*t^7.57)/g2^2 + (2*g2^4*t^7.589)/g1^2 + (g2^10*t^7.608)/g1^8 + (3*g1^9*t^7.72)/g2^3 + t^7.737/(g1^19*g2^13) + 4*g1^3*g2^3*t^7.738 + (2*g2^9*t^7.757)/g1^3 + (2*g1^14*t^7.869)/g2^4 + (2*t^7.887)/(g1^14*g2^14) + 2*g1^8*g2^2*t^7.888 + t^7.906/(g1^20*g2^8) + t^8.037/(g1^9*g2^15) + g1^13*g2*t^8.038 + t^8.055/(g1^15*g2^9) - 5*g1^7*g2^7*t^8.056 + t^8.074/(g1^21*g2^3) + (3*t^8.205)/(g1^10*g2^10) - g1^12*g2^6*t^8.206 + t^8.224/(g1^16*g2^4) + g1^6*g2^12*t^8.225 + g1^28*g2^28*t^8.226 + g2^18*t^8.244 + t^8.355/(g1^5*g2^11) + (2*t^8.373)/(g1^11*g2^5) + g1^11*g2^11*t^8.374 + t^8.504/g2^12 + (4*t^8.673)/(g1*g2^7) - (4*t^8.691)/(g1^7*g2) + 2*g1^15*g2^15*t^8.692 + g1^9*g2^21*t^8.711 + (3*g1^4*t^8.822)/g2^8 - (8*t^8.841)/(g1^2*g2^2) + g1^20*g2^14*t^8.842 - (g2^4*t^8.86)/g1^8 + 2*g1^14*g2^20*t^8.861 + (2*g1^9*t^8.972)/g2^9 - (8*g1^3*t^8.991)/g2^3 + g1^25*g2^13*t^8.992 - t^4.421/(g1*g2*y) - (g1^6*g2^6*t^6.477)/y - t^6.944/(g1^7*g2^7*y) - t^7.112/(g1^8*g2^2*y) - t^7.262/(g1^3*g2^3*y) - (g1^2*t^7.411)/(g2^4*y) + (g2^2*t^7.43)/(g1^4*y) + (2*g1*g2*t^7.579)/y + (g1^6*t^7.729)/y + (g2^6*t^7.748)/y + (3*g1^5*g2^5*t^7.897)/y + (2*g1^10*g2^4*t^8.047)/y + t^8.214/(g1^13*g2^7*y) + (3*t^8.364)/(g1^8*g2^8*y) + (g1^8*g2^14*t^8.384)/y + (2*t^8.514)/(g1^3*g2^9*y) + (2*t^8.532)/(g1^9*g2^3*y) - (g1^13*g2^13*t^8.533)/y + (3*t^8.682)/(g1^4*g2^4*y) + (4*g1*t^8.832)/(g2^5*y) + (g2*t^8.85)/(g1^5*y) + (g1^6*t^8.981)/(g2^6*y) - (t^4.421*y)/(g1*g2) - g1^6*g2^6*t^6.477*y - (t^6.944*y)/(g1^7*g2^7) - (t^7.112*y)/(g1^8*g2^2) - (t^7.262*y)/(g1^3*g2^3) - (g1^2*t^7.411*y)/g2^4 + (g2^2*t^7.43*y)/g1^4 + 2*g1*g2*t^7.579*y + g1^6*t^7.729*y + g2^6*t^7.748*y + 3*g1^5*g2^5*t^7.897*y + 2*g1^10*g2^4*t^8.047*y + (t^8.214*y)/(g1^13*g2^7) + (3*t^8.364*y)/(g1^8*g2^8) + g1^8*g2^14*t^8.384*y + (2*t^8.514*y)/(g1^3*g2^9) + (2*t^8.532*y)/(g1^9*g2^3) - g1^13*g2^13*t^8.533*y + (3*t^8.682*y)/(g1^4*g2^4) + (4*g1*t^8.832*y)/g2^5 + (g2*t^8.85*y)/g1^5 + (g1^6*t^8.981*y)/g2^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1474 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ 0.7291 0.9105 0.8008 [M:[1.0487, 0.8538, 0.9052, 0.9974, 1.0026, 0.9974, 0.6705], q:[0.5244, 0.4269], qb:[0.5705, 0.5757], phi:[0.4756]] t^2.012 + t^2.561 + t^2.716 + t^2.854 + 2*t^2.992 + t^3.146 + t^3.3 + t^4.023 + t^4.281 + t^4.419 + t^4.435 + 2*t^4.573 + t^4.711 + 2*t^4.727 + t^4.85 + 2*t^4.865 + t^4.881 + 2*t^5.004 + t^5.123 + t^5.158 + t^5.277 + t^5.312 + t^5.415 + t^5.431 + t^5.554 + 3*t^5.708 + t^5.846 + t^5.862 + 2*t^5.984 - 3*t^6. - t^4.427/y - t^4.427*y detail