Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2529 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{2}M_{7}$ 0.6916 0.8487 0.8149 [M:[0.9982, 1.0054, 0.9946, 1.009, 0.991, 0.9982, 0.9946], q:[0.4991, 0.5027], qb:[0.5063, 0.4883], phi:[0.5009]] [M:[[2], [-6], [6], [-10], [10], [2], [6]], q:[[1], [-3]], qb:[[-7], [13]], phi:[[-1]]] 1 {a: 378701/547600, c: 232363/273800, M1: 554/555, M2: 186/185, M3: 184/185, M4: 112/111, M5: 110/111, M6: 554/555, M7: 184/185, q1: 277/555, q2: 93/185, qb1: 281/555, qb2: 271/555, phi1: 278/555}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{7}$, ${ }M_{1}$, ${ }M_{6}$, ${ }M_{4}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{7}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$ ${}$ -3 t^2.962 + t^2.973 + 2*t^2.984 + 2*t^2.995 + t^3.027 + t^4.432 + t^4.465 + t^4.476 + t^4.486 + t^4.497 + t^4.508 + 2*t^4.519 + t^4.53 + t^4.541 + t^5.924 + t^5.935 + 2*t^5.946 + 3*t^5.957 + 4*t^5.968 + 3*t^5.978 + t^5.989 - 3*t^6. + t^6.022 - t^6.032 - t^6.043 + t^7.395 + t^7.405 + 2*t^7.416 + 2*t^7.427 + t^7.438 + 2*t^7.449 + 4*t^7.459 + 3*t^7.47 + 3*t^7.481 + 2*t^7.492 + 3*t^7.503 + 3*t^7.514 + 2*t^7.524 + t^7.568 + t^8.865 + t^8.886 + 2*t^8.897 + 3*t^8.908 + 4*t^8.919 + 4*t^8.93 + 4*t^8.941 + 7*t^8.951 + 3*t^8.962 - t^8.973 - 5*t^8.984 - 5*t^8.995 - t^4.503/y - t^7.486/y - t^7.497/y + t^7.508/y + t^7.519/y + t^8.935/y + (2*t^8.946)/y + (4*t^8.957)/y + (3*t^8.968)/y + (4*t^8.978)/y + (2*t^8.989)/y - t^4.503*y - t^7.486*y - t^7.497*y + t^7.508*y + t^7.519*y + t^8.935*y + 2*t^8.946*y + 4*t^8.957*y + 3*t^8.968*y + 4*t^8.978*y + 2*t^8.989*y g1^14*t^2.962 + g1^10*t^2.973 + 2*g1^6*t^2.984 + 2*g1^2*t^2.995 + t^3.027/g1^10 + g1^25*t^4.432 + g1^13*t^4.465 + g1^9*t^4.476 + g1^5*t^4.486 + g1*t^4.497 + t^4.508/g1^3 + (2*t^4.519)/g1^7 + t^4.53/g1^11 + t^4.541/g1^15 + g1^28*t^5.924 + g1^24*t^5.935 + 2*g1^20*t^5.946 + 3*g1^16*t^5.957 + 4*g1^12*t^5.968 + 3*g1^8*t^5.978 + g1^4*t^5.989 - 3*t^6. + t^6.022/g1^8 - t^6.032/g1^12 - t^6.043/g1^16 + g1^39*t^7.395 + g1^35*t^7.405 + 2*g1^31*t^7.416 + 2*g1^27*t^7.427 + g1^23*t^7.438 + 2*g1^19*t^7.449 + 4*g1^15*t^7.459 + 3*g1^11*t^7.47 + 3*g1^7*t^7.481 + 2*g1^3*t^7.492 + (3*t^7.503)/g1 + (3*t^7.514)/g1^5 + (2*t^7.524)/g1^9 + t^7.568/g1^25 + g1^50*t^8.865 + g1^42*t^8.886 + 2*g1^38*t^8.897 + 3*g1^34*t^8.908 + 4*g1^30*t^8.919 + 4*g1^26*t^8.93 + 4*g1^22*t^8.941 + 7*g1^18*t^8.951 + 3*g1^14*t^8.962 - g1^10*t^8.973 - 5*g1^6*t^8.984 - 5*g1^2*t^8.995 - t^4.503/(g1*y) - (g1^5*t^7.486)/y - (g1*t^7.497)/y + t^7.508/(g1^3*y) + t^7.519/(g1^7*y) + (g1^24*t^8.935)/y + (2*g1^20*t^8.946)/y + (4*g1^16*t^8.957)/y + (3*g1^12*t^8.968)/y + (4*g1^8*t^8.978)/y + (2*g1^4*t^8.989)/y - (t^4.503*y)/g1 - g1^5*t^7.486*y - g1*t^7.497*y + (t^7.508*y)/g1^3 + (t^7.519*y)/g1^7 + g1^24*t^8.935*y + 2*g1^20*t^8.946*y + 4*g1^16*t^8.957*y + 3*g1^12*t^8.968*y + 4*g1^8*t^8.978*y + 2*g1^4*t^8.989*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1442 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ 0.6915 0.8474 0.816 [M:[1.0011, 0.9967, 1.0033, 0.9945, 1.0055, 1.0011], q:[0.5005, 0.4984], qb:[0.4962, 0.5071], phi:[0.4995]] t^2.984 + t^2.99 + 2*t^3.003 + t^3.01 + t^3.016 + t^3.023 + t^4.475 + t^4.482 + 2*t^4.489 + t^4.495 + t^4.502 + t^4.508 + t^4.515 + t^4.521 + t^4.541 + t^5.987 + t^5.993 - 2*t^6. - t^4.498/y - t^4.498*y detail