Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2527 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{4}M_{7}$ 0.6921 0.8505 0.8137 [M:[0.9963, 1.011, 0.989, 1.0184, 0.9816, 0.9963, 0.9816], q:[0.4982, 0.5055], qb:[0.5129, 0.4761], phi:[0.5018]] [M:[[2], [-6], [6], [-10], [10], [2], [10]], q:[[1], [-3]], qb:[[-7], [13]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }M_{7}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{6}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{7}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{6}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{7}$ ${}$ -3 t^2.923 + 2*t^2.945 + t^2.967 + 2*t^2.989 + t^3.033 + t^4.362 + t^4.428 + t^4.45 + t^4.472 + t^4.494 + t^4.517 + 2*t^4.539 + t^4.561 + t^4.583 + t^5.845 + 2*t^5.867 + 3*t^5.89 + 3*t^5.912 + 4*t^5.934 + 2*t^5.956 + 2*t^5.978 - 3*t^6. - t^6.044 - t^6.088 - t^6.11 + t^7.285 + 2*t^7.307 + t^7.329 + 2*t^7.351 + 2*t^7.373 + 3*t^7.395 + 3*t^7.417 + 3*t^7.439 + 4*t^7.461 + 3*t^7.483 + 2*t^7.506 + 3*t^7.528 + t^7.55 + t^7.572 - t^7.594 + t^8.724 + t^8.768 + 3*t^8.79 + 4*t^8.812 + 6*t^8.834 + 5*t^8.856 + 6*t^8.878 + 5*t^8.901 + 2*t^8.923 - 4*t^8.945 - 2*t^8.967 - 6*t^8.989 - t^4.506/y - t^7.45/y - t^7.494/y + t^7.517/y + t^7.561/y + (2*t^8.867)/y + (2*t^8.89)/y + (4*t^8.912)/y + (4*t^8.934)/y + (3*t^8.956)/y + (3*t^8.978)/y - t^4.506*y - t^7.45*y - t^7.494*y + t^7.517*y + t^7.561*y + 2*t^8.867*y + 2*t^8.89*y + 4*t^8.912*y + 4*t^8.934*y + 3*t^8.956*y + 3*t^8.978*y g1^14*t^2.923 + 2*g1^10*t^2.945 + g1^6*t^2.967 + 2*g1^2*t^2.989 + t^3.033/g1^6 + g1^25*t^4.362 + g1^13*t^4.428 + g1^9*t^4.45 + g1^5*t^4.472 + g1*t^4.494 + t^4.517/g1^3 + (2*t^4.539)/g1^7 + t^4.561/g1^11 + t^4.583/g1^15 + g1^28*t^5.845 + 2*g1^24*t^5.867 + 3*g1^20*t^5.89 + 3*g1^16*t^5.912 + 4*g1^12*t^5.934 + 2*g1^8*t^5.956 + 2*g1^4*t^5.978 - 3*t^6. - t^6.044/g1^8 - t^6.088/g1^16 - t^6.11/g1^20 + g1^39*t^7.285 + 2*g1^35*t^7.307 + g1^31*t^7.329 + 2*g1^27*t^7.351 + 2*g1^23*t^7.373 + 3*g1^19*t^7.395 + 3*g1^15*t^7.417 + 3*g1^11*t^7.439 + 4*g1^7*t^7.461 + 3*g1^3*t^7.483 + (2*t^7.506)/g1 + (3*t^7.528)/g1^5 + t^7.55/g1^9 + t^7.572/g1^13 - t^7.594/g1^17 + g1^50*t^8.724 + g1^42*t^8.768 + 3*g1^38*t^8.79 + 4*g1^34*t^8.812 + 6*g1^30*t^8.834 + 5*g1^26*t^8.856 + 6*g1^22*t^8.878 + 5*g1^18*t^8.901 + 2*g1^14*t^8.923 - 4*g1^10*t^8.945 - 2*g1^6*t^8.967 - 6*g1^2*t^8.989 - t^4.506/(g1*y) - (g1^9*t^7.45)/y - (g1*t^7.494)/y + t^7.517/(g1^3*y) + t^7.561/(g1^11*y) + (2*g1^24*t^8.867)/y + (2*g1^20*t^8.89)/y + (4*g1^16*t^8.912)/y + (4*g1^12*t^8.934)/y + (3*g1^8*t^8.956)/y + (3*g1^4*t^8.978)/y - (t^4.506*y)/g1 - g1^9*t^7.45*y - g1*t^7.494*y + (t^7.517*y)/g1^3 + (t^7.561*y)/g1^11 + 2*g1^24*t^8.867*y + 2*g1^20*t^8.89*y + 4*g1^16*t^8.912*y + 4*g1^12*t^8.934*y + 3*g1^8*t^8.956*y + 3*g1^4*t^8.978*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1442 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ 0.6915 0.8474 0.816 [M:[1.0011, 0.9967, 1.0033, 0.9945, 1.0055, 1.0011], q:[0.5005, 0.4984], qb:[0.4962, 0.5071], phi:[0.4995]] t^2.984 + t^2.99 + 2*t^3.003 + t^3.01 + t^3.016 + t^3.023 + t^4.475 + t^4.482 + 2*t^4.489 + t^4.495 + t^4.502 + t^4.508 + t^4.515 + t^4.521 + t^4.541 + t^5.987 + t^5.993 - 2*t^6. - t^4.498/y - t^4.498*y detail