Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2431 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1X_1$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_3M_5$ + $ M_4X_2$ + $ M_2M_6$ 0.5083 0.6273 0.8102 [X:[1.7143, 1.4286], M:[0.2857, 1.2381, 0.8571, 0.5714, 1.1429, 0.7619], q:[0.8095, 0.9048], qb:[0.2381, 0.5238], phi:[0.381]] [X:[[0], [0]], M:[[0], [0], [0], [0], [0], [0]], q:[[0], [0]], qb:[[0], [0]], phi:[[0]]] 0 {a: 523/1029, c: 1291/2058, X1: 12/7, X2: 10/7, M1: 2/7, M2: 26/21, M3: 6/7, M4: 4/7, M5: 8/7, M6: 16/21, q1: 17/21, q2: 19/21, qb1: 5/21, qb2: 11/21, phi1: 8/21}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ \phi_1^2$, $ M_3$, $ q_1\tilde{q}_1$, $ M_5$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ q_2\tilde{q}_2$, $ X_2$, $ M_6^2$, $ M_6\phi_1^2$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_6$, $ M_3\phi_1^2$, $ M_6q_1\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_5M_6$, $ M_5\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ M_6\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_1\tilde{q}_2$ $M_3\phi_1\tilde{q}_1\tilde{q}_2$ -2 2*t^2.29 + t^2.57 + t^3.14 + 2*t^3.43 + 2*t^4.29 + 4*t^4.57 + t^4.86 + 2*t^5.43 + 4*t^5.71 - 2*t^6. - 2*t^6.29 + 7*t^6.57 + 7*t^6.86 - 2*t^7.14 - t^7.43 + 6*t^7.71 + 4*t^8. - 7*t^8.29 - 3*t^8.57 + 11*t^8.86 - t^4.14/y - t^6.43/y + t^7.57/y + (3*t^7.86)/y + (2*t^8.43)/y + (4*t^8.71)/y - t^4.14*y - t^6.43*y + t^7.57*y + 3*t^7.86*y + 2*t^8.43*y + 4*t^8.71*y 2*t^2.29 + t^2.57 + t^3.14 + 2*t^3.43 + 2*t^4.29 + 4*t^4.57 + t^4.86 + 2*t^5.43 + 4*t^5.71 - 2*t^6. - 2*t^6.29 + 7*t^6.57 + 7*t^6.86 - 2*t^7.14 - t^7.43 + 6*t^7.71 + 4*t^8. - 7*t^8.29 - 3*t^8.57 + 11*t^8.86 - t^4.14/y - t^6.43/y + t^7.57/y + (3*t^7.86)/y + (2*t^8.43)/y + (4*t^8.71)/y - t^4.14*y - t^6.43*y + t^7.57*y + 3*t^7.86*y + 2*t^8.43*y + 4*t^8.71*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1358 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1X_1$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_3M_5$ + $ M_4X_2$ 0.4897 0.5939 0.8246 [X:[1.7143, 1.4286], M:[0.2857, 1.2381, 0.8571, 0.5714, 1.1429], q:[0.8095, 0.9048], qb:[0.2381, 0.5238], phi:[0.381]] t^2.29 + t^2.57 + t^3.14 + 2*t^3.43 + t^3.71 + 2*t^4.29 + 2*t^4.57 + t^5.43 + 2*t^5.71 - t^6. - t^4.14/y - t^4.14*y detail {a: 8063/16464, c: 4889/8232, X1: 12/7, X2: 10/7, M1: 2/7, M2: 26/21, M3: 6/7, M4: 4/7, M5: 8/7, q1: 17/21, q2: 19/21, qb1: 5/21, qb2: 11/21, phi1: 8/21}