Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2427 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ 0.6648 0.9062 0.7336 [X:[], M:[0.9195, 1.2414, 0.7586, 0.7586, 0.7012, 0.7012, 0.7586], q:[0.7299, 0.3506], qb:[0.3506, 0.408], phi:[0.5402]] [X:[], M:[[4], [-12], [12], [12], [-10], [-10], [12]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_6$, $ q_2\tilde{q}_1$, $ M_3$, $ M_4$, $ M_7$, $ q_2\tilde{q}_2$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_3M_5$, $ M_4M_5$, $ M_3M_6$, $ M_4M_6$, $ M_5M_7$, $ M_6M_7$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_3M_7$, $ M_4M_7$, $ M_7^2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1M_5$, $ M_1M_6$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_1M_3$, $ M_1M_4$, $ M_1M_7$, $ \phi_1q_1\tilde{q}_2$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_1^2$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_7\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_1$, $ M_7q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_7q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_5\phi_1q_2^2$, $ M_6\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$ $M_3\phi_1q_2^2$, $ M_7\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$ -1 3*t^2.1 + 4*t^2.28 + t^2.76 + 2*t^3.24 + t^3.41 + t^3.72 + t^4.07 + 6*t^4.21 + 12*t^4.38 + 10*t^4.55 + 3*t^4.86 + 4*t^5.03 + 6*t^5.35 + 11*t^5.52 + 4*t^5.69 + t^5.83 - t^6. + t^6.17 + 10*t^6.31 + 4*t^6.34 + 23*t^6.48 + 29*t^6.65 + 21*t^6.83 + 5*t^6.97 + 7*t^7.14 + 10*t^7.31 + 10*t^7.45 + t^7.48 + 22*t^7.62 + 27*t^7.79 + 10*t^7.96 - 11*t^8.1 + t^8.14 - 10*t^8.28 + 15*t^8.41 + 4*t^8.45 + 35*t^8.59 + 10*t^8.62 + 48*t^8.76 + 57*t^8.93 - t^4.62/y - (2*t^6.72)/y - (2*t^6.9)/y + (3*t^7.21)/y + (12*t^7.38)/y + (6*t^7.55)/y + (3*t^7.86)/y + (4*t^8.03)/y + (8*t^8.35)/y + (13*t^8.52)/y + (4*t^8.69)/y - t^4.62*y - 2*t^6.72*y - 2*t^6.9*y + 3*t^7.21*y + 12*t^7.38*y + 6*t^7.55*y + 3*t^7.86*y + 4*t^8.03*y + 8*t^8.35*y + 13*t^8.52*y + 4*t^8.69*y (3*t^2.1)/g1^10 + 4*g1^12*t^2.28 + g1^4*t^2.76 + (2*t^3.24)/g1^4 + g1^18*t^3.41 + t^3.72/g1^12 + g1^32*t^4.07 + (6*t^4.21)/g1^20 + 12*g1^2*t^4.38 + 10*g1^24*t^4.55 + (3*t^4.86)/g1^6 + 4*g1^16*t^5.03 + (6*t^5.35)/g1^14 + 11*g1^8*t^5.52 + 4*g1^30*t^5.69 + t^5.83/g1^22 - t^6. + g1^22*t^6.17 + (10*t^6.31)/g1^30 + 4*g1^44*t^6.34 + (23*t^6.48)/g1^8 + 29*g1^14*t^6.65 + 21*g1^36*t^6.83 + (5*t^6.97)/g1^16 + 7*g1^6*t^7.14 + 10*g1^28*t^7.31 + (10*t^7.45)/g1^24 + g1^50*t^7.48 + (22*t^7.62)/g1^2 + 27*g1^20*t^7.79 + 10*g1^42*t^7.96 - (11*t^8.1)/g1^10 + g1^64*t^8.14 - 10*g1^12*t^8.28 + (15*t^8.41)/g1^40 + 4*g1^34*t^8.45 + (35*t^8.59)/g1^18 + 10*g1^56*t^8.62 + 48*g1^4*t^8.76 + 57*g1^26*t^8.93 - t^4.62/(g1^2*y) - (2*t^6.72)/(g1^12*y) - (2*g1^10*t^6.9)/y + (3*t^7.21)/(g1^20*y) + (12*g1^2*t^7.38)/y + (6*g1^24*t^7.55)/y + (3*t^7.86)/(g1^6*y) + (4*g1^16*t^8.03)/y + (8*t^8.35)/(g1^14*y) + (13*g1^8*t^8.52)/y + (4*g1^30*t^8.69)/y - (t^4.62*y)/g1^2 - (2*t^6.72*y)/g1^12 - 2*g1^10*t^6.9*y + (3*t^7.21*y)/g1^20 + 12*g1^2*t^7.38*y + 6*g1^24*t^7.55*y + (3*t^7.86*y)/g1^6 + 4*g1^16*t^8.03*y + (8*t^8.35*y)/g1^14 + 13*g1^8*t^8.52*y + 4*g1^30*t^8.69*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1366 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ 0.6463 0.8724 0.7409 [X:[], M:[0.922, 1.2339, 0.7661, 0.7661, 0.6949, 0.6949], q:[0.7305, 0.3475], qb:[0.3475, 0.4186], phi:[0.539]] 3*t^2.08 + 3*t^2.3 + t^2.77 + 2*t^3.23 + t^3.45 + 2*t^3.7 + t^4.13 + 6*t^4.17 + 9*t^4.38 + 6*t^4.6 + 3*t^4.85 + 3*t^5.06 + 6*t^5.32 + 9*t^5.53 + 3*t^5.75 + 4*t^5.79 + t^6. - t^4.62/y - t^4.62*y detail