Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2426 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_2$ 0.6604 0.8968 0.7363 [X:[], M:[0.9278, 1.2165, 0.7835, 0.7835, 0.6804, 0.6804, 0.8247], q:[0.732, 0.3402], qb:[0.3402, 0.4434], phi:[0.5361]] [X:[], M:[[4], [-12], [12], [12], [-10], [-10], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_6$, $ q_2\tilde{q}_1$, $ M_3$, $ M_4$, $ q_2\tilde{q}_2$, $ M_7$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_3M_5$, $ M_4M_5$, $ M_3M_6$, $ M_4M_6$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5M_7$, $ M_6M_7$, $ M_7q_2\tilde{q}_1$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1M_5$, $ M_1M_6$, $ M_3M_7$, $ M_4M_7$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ M_7^2$, $ M_1M_3$, $ M_1M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_7$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_1^2$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_7\phi_1^2$, $ M_5\phi_1q_2^2$, $ M_6\phi_1q_2^2$, $ M_7q_1\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_5\phi_1\tilde{q}_1^2$, $ M_6\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ $M_3\phi_1q_2^2$, $ M_3\phi_1\tilde{q}_1^2$, $ M_4\phi_1\tilde{q}_1^2$, $ \phi_1q_2^3\tilde{q}_2$ 1 3*t^2.04 + 3*t^2.35 + t^2.47 + t^2.78 + 2*t^3.22 + 2*t^3.65 + 6*t^4.08 + t^4.27 + 9*t^4.39 + 3*t^4.52 + 6*t^4.7 + 6*t^4.82 + t^4.95 + 3*t^5.13 + 7*t^5.26 + 6*t^5.57 + 6*t^5.69 + t^6. + 12*t^6.12 + 18*t^6.43 + 6*t^6.56 + 3*t^6.62 + 16*t^6.74 + 16*t^6.87 + 3*t^6.99 + 10*t^7.05 + 9*t^7.18 + 18*t^7.3 + t^7.42 + 6*t^7.48 + 13*t^7.61 + 13*t^7.73 + 8*t^7.92 + 3*t^8.04 + 21*t^8.16 - 6*t^8.35 + 29*t^8.47 + t^8.54 + 12*t^8.6 + 22*t^8.78 + 28*t^8.91 + 6*t^8.97 - t^4.61/y - (2*t^6.65)/y - t^6.96/y + (2*t^7.08)/y + (9*t^7.39)/y + (3*t^7.52)/y + (3*t^7.7)/y + (6*t^7.82)/y + (4*t^8.13)/y + (8*t^8.26)/y + (8*t^8.57)/y + (5*t^8.69)/y - t^4.61*y - 2*t^6.65*y - t^6.96*y + 2*t^7.08*y + 9*t^7.39*y + 3*t^7.52*y + 3*t^7.7*y + 6*t^7.82*y + 4*t^8.13*y + 8*t^8.26*y + 8*t^8.57*y + 5*t^8.69*y (3*t^2.04)/g1^10 + 3*g1^12*t^2.35 + t^2.47/g1^18 + g1^4*t^2.78 + (2*t^3.22)/g1^4 + (2*t^3.65)/g1^12 + (6*t^4.08)/g1^20 + g1^32*t^4.27 + 9*g1^2*t^4.39 + (3*t^4.52)/g1^28 + 6*g1^24*t^4.7 + (6*t^4.82)/g1^6 + t^4.95/g1^36 + 3*g1^16*t^5.13 + (7*t^5.26)/g1^14 + 6*g1^8*t^5.57 + (6*t^5.69)/g1^22 + t^6. + (12*t^6.12)/g1^30 + (18*t^6.43)/g1^8 + (6*t^6.56)/g1^38 + 3*g1^44*t^6.62 + 16*g1^14*t^6.74 + (16*t^6.87)/g1^16 + (3*t^6.99)/g1^46 + 10*g1^36*t^7.05 + 9*g1^6*t^7.18 + (18*t^7.3)/g1^24 + t^7.42/g1^54 + 6*g1^28*t^7.48 + (13*t^7.61)/g1^2 + (13*t^7.73)/g1^32 + 8*g1^20*t^7.92 + (3*t^8.04)/g1^10 + (21*t^8.16)/g1^40 - 6*g1^12*t^8.35 + (29*t^8.47)/g1^18 + g1^64*t^8.54 + (12*t^8.6)/g1^48 + 22*g1^4*t^8.78 + (28*t^8.91)/g1^26 + 6*g1^56*t^8.97 - t^4.61/(g1^2*y) - (2*t^6.65)/(g1^12*y) - (g1^10*t^6.96)/y + (2*t^7.08)/(g1^20*y) + (9*g1^2*t^7.39)/y + (3*t^7.52)/(g1^28*y) + (3*g1^24*t^7.7)/y + (6*t^7.82)/(g1^6*y) + (4*g1^16*t^8.13)/y + (8*t^8.26)/(g1^14*y) + (8*g1^8*t^8.57)/y + (5*t^8.69)/(g1^22*y) - (t^4.61*y)/g1^2 - (2*t^6.65*y)/g1^12 - g1^10*t^6.96*y + (2*t^7.08*y)/g1^20 + 9*g1^2*t^7.39*y + (3*t^7.52*y)/g1^28 + 3*g1^24*t^7.7*y + (6*t^7.82*y)/g1^6 + 4*g1^16*t^8.13*y + (8*t^8.26*y)/g1^14 + 8*g1^8*t^8.57*y + (5*t^8.69*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1366 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ 0.6463 0.8724 0.7409 [X:[], M:[0.922, 1.2339, 0.7661, 0.7661, 0.6949, 0.6949], q:[0.7305, 0.3475], qb:[0.3475, 0.4186], phi:[0.539]] 3*t^2.08 + 3*t^2.3 + t^2.77 + 2*t^3.23 + t^3.45 + 2*t^3.7 + t^4.13 + 6*t^4.17 + 9*t^4.38 + 6*t^4.6 + 3*t^4.85 + 3*t^5.06 + 6*t^5.32 + 9*t^5.53 + 3*t^5.75 + 4*t^5.79 + t^6. - t^4.62/y - t^4.62*y detail