Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2422 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2^2$ + $ M_1M_7$ 0.637 0.8543 0.7456 [X:[], M:[0.9203, 1.2391, 0.7609, 0.7609, 0.6992, 0.7609, 1.0797], q:[0.7301, 0.3496], qb:[0.3496, 0.4113], phi:[0.5398]] [X:[], M:[[4], [-12], [12], [12], [-10], [12], [-4]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ q_2\tilde{q}_1$, $ M_3$, $ M_4$, $ M_6$, $ q_2\tilde{q}_2$, $ M_7$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_3M_5$, $ M_4M_5$, $ M_5M_6$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_3M_6$, $ M_4M_6$, $ M_6^2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5M_7$, $ M_5\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_3M_7$, $ M_4M_7$, $ M_6M_7$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$ $M_3\phi_1\tilde{q}_1^2$, $ M_4\phi_1\tilde{q}_1^2$, $ M_6\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1^2\tilde{q}_2$ -1 2*t^2.1 + 4*t^2.28 + 3*t^3.24 + t^3.42 + t^3.72 + t^3.9 + t^4.09 + 3*t^4.2 + 8*t^4.38 + 10*t^4.57 + 6*t^5.34 + 13*t^5.52 + 4*t^5.71 - t^6. + 3*t^6.18 + 4*t^6.29 + 4*t^6.37 + 13*t^6.48 + 20*t^6.66 + 20*t^6.85 - 2*t^7.14 + 2*t^7.33 + 7*t^7.43 + t^7.51 + 18*t^7.62 + 30*t^7.8 - t^7.91 + 11*t^7.99 - 11*t^8.1 + t^8.17 - 13*t^8.28 + 5*t^8.39 + 6*t^8.47 + 18*t^8.58 + 10*t^8.65 + 33*t^8.76 + 40*t^8.95 - t^4.62/y - t^6.72/y - (2*t^6.9)/y + t^7.2/y + (9*t^7.38)/y + (6*t^7.57)/y - t^7.86/y + (8*t^8.34)/y + (15*t^8.52)/y + (4*t^8.71)/y + t^8.82/y - t^4.62*y - t^6.72*y - 2*t^6.9*y + t^7.2*y + 9*t^7.38*y + 6*t^7.57*y - t^7.86*y + 8*t^8.34*y + 15*t^8.52*y + 4*t^8.71*y + t^8.82*y (2*t^2.1)/g1^10 + 4*g1^12*t^2.28 + (3*t^3.24)/g1^4 + g1^18*t^3.42 + t^3.72/g1^12 + g1^10*t^3.9 + g1^32*t^4.09 + (3*t^4.2)/g1^20 + 8*g1^2*t^4.38 + 10*g1^24*t^4.57 + (6*t^5.34)/g1^14 + 13*g1^8*t^5.52 + 4*g1^30*t^5.71 - t^6. + 3*g1^22*t^6.18 + (4*t^6.29)/g1^30 + 4*g1^44*t^6.37 + (13*t^6.48)/g1^8 + 20*g1^14*t^6.66 + 20*g1^36*t^6.85 - 2*g1^6*t^7.14 + 2*g1^28*t^7.33 + (7*t^7.43)/g1^24 + g1^50*t^7.51 + (18*t^7.62)/g1^2 + 30*g1^20*t^7.8 - t^7.91/g1^32 + 11*g1^42*t^7.99 - (11*t^8.1)/g1^10 + g1^64*t^8.17 - 13*g1^12*t^8.28 + (5*t^8.39)/g1^40 + 6*g1^34*t^8.47 + (18*t^8.58)/g1^18 + 10*g1^56*t^8.65 + 33*g1^4*t^8.76 + 40*g1^26*t^8.95 - t^4.62/(g1^2*y) - t^6.72/(g1^12*y) - (2*g1^10*t^6.9)/y + t^7.2/(g1^20*y) + (9*g1^2*t^7.38)/y + (6*g1^24*t^7.57)/y - t^7.86/(g1^6*y) + (8*t^8.34)/(g1^14*y) + (15*g1^8*t^8.52)/y + (4*g1^30*t^8.71)/y + t^8.82/(g1^22*y) - (t^4.62*y)/g1^2 - (t^6.72*y)/g1^12 - 2*g1^10*t^6.9*y + (t^7.2*y)/g1^20 + 9*g1^2*t^7.38*y + 6*g1^24*t^7.57*y - (t^7.86*y)/g1^6 + (8*t^8.34*y)/g1^14 + 15*g1^8*t^8.52*y + 4*g1^30*t^8.71*y + (t^8.82*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4461 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2^2$ + $ M_1M_7$ + $ M_8q_1\tilde{q}_2$ 0.6504 0.8761 0.7424 [X:[], M:[0.9262, 1.2213, 0.7787, 0.7787, 0.6844, 0.7787, 1.0738, 0.8319], q:[0.7316, 0.3422], qb:[0.3422, 0.4366], phi:[0.5369]] 2*t^2.05 + 4*t^2.34 + t^2.5 + 3*t^3.22 + t^3.66 + t^3.95 + 3*t^4.11 + t^4.23 + 8*t^4.39 + 2*t^4.55 + 10*t^4.67 + 4*t^4.83 + t^4.99 + 6*t^5.27 + 11*t^5.56 + 3*t^5.72 - t^6. - t^4.61/y - t^4.61*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1365 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2^2$ 0.6444 0.8674 0.7428 [X:[], M:[0.9187, 1.244, 0.756, 0.756, 0.7033, 0.756], q:[0.7297, 0.3517], qb:[0.3517, 0.4044], phi:[0.5407]] 2*t^2.11 + 4*t^2.27 + t^2.76 + 2*t^3.24 + t^3.4 + t^3.73 + t^3.89 + t^4.05 + 3*t^4.22 + 8*t^4.38 + 10*t^4.54 + 2*t^4.87 + 4*t^5.02 + 4*t^5.35 + 10*t^5.51 + 4*t^5.67 + t^6. - t^4.62/y - t^4.62*y detail