Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2365 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}^{2}$ + ${ }M_{1}M_{5}$ + ${ }M_{4}M_{7}$ | 0.6917 | 0.8492 | 0.8144 | [M:[1.0057, 0.9972, 1.0, 1.0113, 0.9943, 0.9887, 0.9887], q:[0.4858, 0.5085], qb:[0.5028, 0.4972], phi:[0.5014]] | [M:[[-4], [2], [0], [-8], [4], [8], [8]], q:[[10], [-6]], qb:[[-2], [2]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{1}\tilde{q}_{2}$, ${ }M_{6}$, ${ }M_{7}$, ${ }M_{5}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{2}M_{5}$, ${ }M_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{2}M_{3}$ | ${}$ | -2 | t^2.949 + 2*t^2.966 + t^2.983 + t^2.991 + t^3. + t^3.017 + t^4.419 + t^4.453 + t^4.47 + 2*t^4.487 + t^4.504 + 2*t^4.521 + t^4.538 + t^4.555 + t^5.898 + 2*t^5.915 + 3*t^5.932 + t^5.94 + 2*t^5.949 + 2*t^5.957 + 2*t^5.966 + t^5.974 + t^5.983 + t^5.991 - 2*t^6. + t^6.009 - t^6.017 - t^6.034 - t^6.051 - t^6.068 + t^7.368 + 2*t^7.385 + 2*t^7.402 + 3*t^7.419 + 4*t^7.436 + 4*t^7.453 + 4*t^7.47 + 4*t^7.487 + 3*t^7.504 + 2*t^7.521 + t^7.538 + t^8.838 + t^8.847 + 2*t^8.864 + t^8.872 + 3*t^8.881 + 2*t^8.889 + 4*t^8.898 + 4*t^8.906 + 2*t^8.915 + 4*t^8.923 + t^8.932 + 5*t^8.94 - 2*t^8.949 + 4*t^8.957 - 6*t^8.966 + 5*t^8.974 - 6*t^8.983 + t^8.991 - t^4.504/y - t^7.47/y + t^7.538/y + (2*t^8.915)/y + (2*t^8.932)/y + t^8.94/y + (3*t^8.949)/y + (2*t^8.957)/y + (3*t^8.966)/y + t^8.974/y + (3*t^8.983)/y + t^8.991/y - t^4.504*y - t^7.47*y + t^7.538*y + 2*t^8.915*y + 2*t^8.932*y + t^8.94*y + 3*t^8.949*y + 2*t^8.957*y + 3*t^8.966*y + t^8.974*y + 3*t^8.983*y + t^8.991*y | g1^12*t^2.949 + 2*g1^8*t^2.966 + g1^4*t^2.983 + g1^2*t^2.991 + t^3. + t^3.017/g1^4 + g1^19*t^4.419 + g1^11*t^4.453 + g1^7*t^4.47 + 2*g1^3*t^4.487 + t^4.504/g1 + (2*t^4.521)/g1^5 + t^4.538/g1^9 + t^4.555/g1^13 + g1^24*t^5.898 + 2*g1^20*t^5.915 + 3*g1^16*t^5.932 + g1^14*t^5.94 + 2*g1^12*t^5.949 + 2*g1^10*t^5.957 + 2*g1^8*t^5.966 + g1^6*t^5.974 + g1^4*t^5.983 + g1^2*t^5.991 - 2*t^6. + t^6.009/g1^2 - t^6.017/g1^4 - t^6.034/g1^8 - t^6.051/g1^12 - t^6.068/g1^16 + g1^31*t^7.368 + 2*g1^27*t^7.385 + 2*g1^23*t^7.402 + 3*g1^19*t^7.419 + 4*g1^15*t^7.436 + 4*g1^11*t^7.453 + 4*g1^7*t^7.47 + 4*g1^3*t^7.487 + (3*t^7.504)/g1 + (2*t^7.521)/g1^5 + t^7.538/g1^9 + g1^38*t^8.838 + g1^36*t^8.847 + 2*g1^32*t^8.864 + g1^30*t^8.872 + 3*g1^28*t^8.881 + 2*g1^26*t^8.889 + 4*g1^24*t^8.898 + 4*g1^22*t^8.906 + 2*g1^20*t^8.915 + 4*g1^18*t^8.923 + g1^16*t^8.932 + 5*g1^14*t^8.94 - 2*g1^12*t^8.949 + 4*g1^10*t^8.957 - 6*g1^8*t^8.966 + 5*g1^6*t^8.974 - 6*g1^4*t^8.983 + g1^2*t^8.991 - t^4.504/(g1*y) - (g1^7*t^7.47)/y + t^7.538/(g1^9*y) + (2*g1^20*t^8.915)/y + (2*g1^16*t^8.932)/y + (g1^14*t^8.94)/y + (3*g1^12*t^8.949)/y + (2*g1^10*t^8.957)/y + (3*g1^8*t^8.966)/y + (g1^6*t^8.974)/y + (3*g1^4*t^8.983)/y + (g1^2*t^8.991)/y - (t^4.504*y)/g1 - g1^7*t^7.47*y + (t^7.538*y)/g1^9 + 2*g1^20*t^8.915*y + 2*g1^16*t^8.932*y + g1^14*t^8.94*y + 3*g1^12*t^8.949*y + 2*g1^10*t^8.957*y + 3*g1^8*t^8.966*y + g1^6*t^8.974*y + 3*g1^4*t^8.983*y + g1^2*t^8.991*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1321 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}^{2}$ + ${ }M_{1}M_{5}$ | 0.6917 | 0.8473 | 0.8164 | [M:[0.9935, 1.0033, 1.0, 0.9869, 1.0065, 1.0131], q:[0.5164, 0.4902], qb:[0.4967, 0.5033], phi:[0.4984]] | t^2.961 + t^2.98 + t^3. + t^3.01 + t^3.02 + t^3.039 + t^3.059 + t^4.436 + t^4.456 + 2*t^4.475 + t^4.495 + 2*t^4.515 + t^4.534 + t^4.554 + t^4.593 + t^5.971 + t^5.99 - t^6. - t^4.495/y - t^4.495*y | detail |